基于“肝肠相通”理论对清热解毒类中药调控肠道微生态防治非酒精性脂肪性肝病的探讨

陈佳慧, 徐甜, 王雪茜, 等. 基于“肝肠相通”理论对清热解毒类中药调控肠道微生态防治非酒精性脂肪性肝病的探讨[J]. 中国中西医结合消化杂志, 2023, 31(12): 940-945. doi: 10.3969/j.issn.1671-038X.2023.12.06
引用本文: 陈佳慧, 徐甜, 王雪茜, 等. 基于“肝肠相通”理论对清热解毒类中药调控肠道微生态防治非酒精性脂肪性肝病的探讨[J]. 中国中西医结合消化杂志, 2023, 31(12): 940-945. doi: 10.3969/j.issn.1671-038X.2023.12.06
CHEN Jiahui, XU Tian, WANG Xueqian, et al. Discussion on the regulation of intestinal microecology by heat-clearing and toxin-resolving herbs to prevent and control non-alcoholic fatty liver disease based on the theory of 'liver and intestine are connected'[J]. Chin J Integr Tradit West Med Dig, 2023, 31(12): 940-945. doi: 10.3969/j.issn.1671-038X.2023.12.06
Citation: CHEN Jiahui, XU Tian, WANG Xueqian, et al. Discussion on the regulation of intestinal microecology by heat-clearing and toxin-resolving herbs to prevent and control non-alcoholic fatty liver disease based on the theory of "liver and intestine are connected"[J]. Chin J Integr Tradit West Med Dig, 2023, 31(12): 940-945. doi: 10.3969/j.issn.1671-038X.2023.12.06

基于“肝肠相通”理论对清热解毒类中药调控肠道微生态防治非酒精性脂肪性肝病的探讨

  • 基金项目:
    国家自然科学基金(No:82004327、81774122);国家中医药管理局中医学术流派传承工作室(No:1190062620029);中央高校基本科研业务费专项资金资助(No:2022-JYB-JBZR-004)
详细信息

Discussion on the regulation of intestinal microecology by heat-clearing and toxin-resolving herbs to prevent and control non-alcoholic fatty liver disease based on the theory of "liver and intestine are connected"

More Information
  • 非酒精性脂肪性肝病(NAFLD)是我国常见的代谢性疾病之一,患病率呈逐年上升的趋势。中医药“肝肠相通”的理论提出于明代,而历代本草记载均显示清热解毒药具有调控肠道的潜在作用。结合清热解毒药的不少活性成分生物利用度较低,我们推测,清热解毒药改善NAFLD的作用靶位可能在肠道。现有研究表明,清热解毒类中药,如黄连、黄芩、土茯苓、蒲公英、连翘、胆类动物药等,均能改善NAFLD的代谢障碍和炎症反应,同时又能调节肠道微生态及细菌来源的代谢物。本文从肠道菌群与NAFLD的相互作用出发,探讨了清热解毒药调控肠道菌群相关机制,挖掘中医“肝病治肠”理论的生物学证据,为靶向肠道菌群的NAFLD中药创新药物研发提供参考。
  • 加载中
  • [1]

    Schaffner F, Thaler H. Nonalcoholic fatty liver disease[J]. Prog Liver Dis, 1986, 8: 283-298.

    [2]

    Lu R, Liu Y, Hong T. Epidemiological characteristics and management of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in China: A narrative review[J]. Diabetes Obes Metab, 2023, 25 Suppl 1: 13-26.

    [3]

    Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(5): 279-297. doi: 10.1038/s41575-020-0269-9

    [4]

    李梃. 医学入门[M]. 北京: 中国中医药出版社, 1995: 637-637.

    [5]

    Li CH, Tang SC, Wong CH, et al. Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway[J]. Eur J Pharmacol, 2018, 825: 107-118. doi: 10.1016/j.ejphar.2018.02.035

    [6]

    Li P, Zhang R, Wang M, et al. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation[J]. Front Pharmacol, 2022, 13: 917329. doi: 10.3389/fphar.2022.917329

    [7]

    王庆国. 刘渡舟医论医话100则[M]. 北京: 人民卫生出版社, 2013: 407-407.

    [8]

    刘渡舟. 刘渡舟《伤寒论》专题讲座[M]. 北京: 人民卫生出版社, 2013: 169-169.

    [9]

    陆若琳, 孙美娟. 中医药治疗肠道屏障功能障碍研究进展[J]. 光明中医, 2022, 37(12): 2271-2274. doi: 10.3969/j.issn.1003-8914.2022.12.062

    [10]

    张琢, 董若兰, 刘琼, 等. 清热解毒中药及复方治疗溃疡性结肠炎的研究进展[J]. 华中科技大学学报(医学版), 2022, 51(6): 858-863. doi: 10.3870/j.issn.1672-0741.2022.06.019

    [11]

    Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease(NAFLD)-pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211. doi: 10.1080/03602532.2017.1293683

    [12]

    Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. doi: 10.1038/s41575-018-0011-z

    [13]

    Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, et al. Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?[J]. Gastroenterology, 2020, 158(7): 1881-1898. doi: 10.1053/j.gastro.2020.01.049

    [14]

    Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: An update[J]. Metabolism, 2016, 65(8): 1109-1123. doi: 10.1016/j.metabol.2016.05.003

    [15]

    Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34(11): 1700-1718. doi: 10.1016/j.cmet.2022.09.017

    [16]

    Xu M, Luo K, Li J, et al. Role of Intestinal Microbes in Chronic Liver Diseases[J]. Int J Mol Sci, 2022, 23(20): 12661. doi: 10.3390/ijms232012661

    [17]

    Kolodziejczyk AA, Zheng D, Shibolet O, et al. The role of the microbiome in NAFLD and NASH[J]. EMBO Mol Med, 2019, 11(2): e9302. doi: 10.15252/emmm.201809302

    [18]

    Lelouvier B, Servant F, Païssé S, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis[J]. Hepatology, 2016, 64(6): 2015-2027. doi: 10.1002/hep.28829

    [19]

    Ma J, Zhou Q, Li H. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy[J]. Nutrients, 2017, 9(10): 1124. doi: 10.3390/nu9101124

    [20]

    Vallianou N, Christodoulatos GS, Karampela I, et al. Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives[J]. Biomolecules, 2021, 12(1): 56. doi: 10.3390/biom12010056

    [21]

    Kwon OJ, Noh JW, Lee B C. Mechanisms and Effect of Coptidis Rhizoma on Obesity-Induced Inflammation: In Silico and In Vivo Approaches[J]. Int J Mol Sci, 2021, 22(15): 8075. doi: 10.3390/ijms22158075

    [22]

    Lyu Y, Lin L, Xie Y, et al. Blood-Glucose-Lowering Effect of Coptidis Rhizoma Extracts From Different Origins via Gut Microbiota Modulation in db/db Mice[J]. Front Pharmacol, 2021, 12: 684358. doi: 10.3389/fphar.2021.684358

    [23]

    Yang Y, Cao S, Xu W, et al. Dual modulation of gut bacteria and fungi manifests the gut-based anti-hyperlipidemic effect of Coptidis Rhizoma[J]. Biomed Pharmacother, 2022, 153: 113542. doi: 10.1016/j.biopha.2022.113542

    [24]

    Li D, Feng G, Li Y, et al. Benefits of Huang Lian mediated by gut microbiota on HFD/STZ-induced type 2 diabetes mellitus in mice[J]. Front Endocrinol(Lausanne), 2023, 14: 1120221. doi: 10.3389/fendo.2023.1120221

    [25]

    Wang H, Zhang H, Gao Z, et al. The mechanism of berberine alleviating metabolic disorder based on gut microbiome[J]. Front Cell Infect Microbiol, 2022, 12: 854885. doi: 10.3389/fcimb.2022.854885

    [26]

    Cao Y, Pan Q, Cai W, et al. Modulation of Gut Microbiota by Berberine Improves Steatohepatitis in High-Fat Diet-Fed BALB/C Mice[J]. Arch Iran Med, 2016, 19(3): 197-203.

    [27]

    Li D, Zheng J, Hu Y, et al. Amelioration of Intestinal Barrier Dysfunction by Berberine in the Treatment of Nonalcoholic Fatty Liver Disease in Rats[J]. Pharmacogn Mag, 2017, 13(52): 677-682. doi: 10.4103/pm.pm_584_16

    [28]

    Yan X, Zhang Y, Peng Y, et al. The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice[J]. J Ethnopharmacol, 2022, 293: 115238. doi: 10.1016/j.jep.2022.115238

    [29]

    刘洪毓, 张亚男, 李自辉, 等. 基于"入腹知性"理论的黄芩干预大鼠肠道菌群多样性的探讨[J]. 中国实验方剂学杂志, 2019, 25(18): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201918026.htm

    [30]

    朱晨, 段学清, 段智璇, 等. 清热解毒中药黄芩和栀子对大鼠不同肠段菌群的影响[J]. 中华中医药学刊, 2023, 42(3): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYHS202303012.htm

    [31]

    Hu Q, Zhang W, Wu Z, et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects[J]. Pharmacol Res, 2021, 165: 105444. doi: 10.1016/j.phrs.2021.105444

    [32]

    Guo C, Li Q, Chen R, et al. Baicalein alleviates non-alcoholic fatty liver disease in mice by ameliorating intestinal barrier dysfunction[J]. Food Funct, 2023, 14(4): 2138-2148. doi: 10.1039/D2FO03015B

    [33]

    Li P, Hu J, Zhao H, et al. Multi-Omics Reveals Inhibitory Effect of Baicalein on Non-Alcoholic Fatty Liver Disease in Mice[J]. Front Pharmacol, 2022, 13: 925349. doi: 10.3389/fphar.2022.925349

    [34]

    赵磊. 土茯苓总黄酮与肠道菌群相互作用的研究[D]. 苏州: 苏州大学, 2020.

    [35]

    张清峰, 付莹娟, 黄占旺, 等. 土茯苓黄酮对高脂小鼠脂肪代谢及抗氧化水平的影响[J]. 现代食品科技, 2016, 32(11): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP201611002.htm

    [36]

    Zhao L, Qi Z, Yi L, et al. The interaction between gut microbiota and flavonoid extract from Smilax glabra Roxb. and its potent alleviation of fatty liver[J]. Food Funct, 2021, 12(17): 7836-7850. doi: 10.1039/D1FO00727K

    [37]

    Wang T, Ye Y, Ji J, et al. Astilbin from Smilax glabra Roxb. alleviates high-fat diet-induced metabolic dysfunction[J]. Food Funct, 2022, 13(9): 5023-5036. doi: 10.1039/D2FO00060A

    [38]

    Hu C. Taraxacum: Phytochemistry and health benefits[J]. Chin Herb Med, 2018, 10(4): 353-361. doi: 10.1016/j.chmed.2018.08.003

    [39]

    Domitrović R, Jakovac H, Romić Z, et al. Antifibrotic activity of Taraxacum officinale root in carbon tetrachloride-induced liver damage in mice[J]. J Ethnopharmacol, 2010, 130(3): 569-577. doi: 10.1016/j.jep.2010.05.046

    [40]

    Mahboubi M, Mahboubi M. Hepatoprotection by dandelion(Taraxacum officinale)and mechanisms[J]. Asian Pac J Trop Bio, 2020, 10(1): 1-10. doi: 10.4103/2221-1691.273081

    [41]

    李爽. 基于肠-肝轴的蒲公英多糖与黄芪多糖联用抗HF机制研究[D]. 佳木斯: 佳木斯大学, 2022.

    [42]

    Zhang Y, Miao H, Yan H, et al. Hepatoprotective effect of Forsythiae Fructus water extract against carbon tetrachloride-induced liver fibrosis in mice[J]. J Ethnopharmacol, 2018, 218: 27-34. doi: 10.1016/j.jep.2018.02.033

    [43]

    Wang C, Ma C, Fu K, et al. Phillygenin Attenuates Carbon Tetrachloride-Induced Liver Fibrosis via Modulating Inflammation and Gut Microbiota[J]. Front Pharmacol, 2021, 12: 756924. doi: 10.3389/fphar.2021.756924

    [44]

    Wang C, Ma C, Fu K, et al. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism[J]. J Ethnopharmacol, 2022, 296: 115478. doi: 10.1016/j.jep.2022.115478

    [45]

    Fu K, Ma C, Wang C, et al. Forsythiaside A alleviated carbon tetrachloride-induced liver fibrosis by modulating gut microbiota composition to increase short-chain fatty acids and restoring bile acids metabolism disorder[J]. Biomed Pharmacother, 2022, 151: 113185. doi: 10.1016/j.biopha.2022.113185

    [46]

    李晔, 曾建伟, 欧余航, 等. 熊胆粉和猪胆粉干预脂肪肝大鼠的实验研究[J]. 实用中西医结合临床, 2017, 17(4): 157-159. https://www.cnki.com.cn/Article/CJFDTOTAL-SZXL201704099.htm

    [47]

    陈达鑫. 不同动物胆汁的成分差异分析及对非酒精性脂肪肝的作用研究[D]. 福州: 福建中医药大学, 2017.

    [48]

    Li H, Wang Q, Chen P, et al. Ursodeoxycholic Acid Treatment Restores Gut Microbiota and Alleviates Liver Inflammation in Non-Alcoholic Steatohepatitic Mouse Model[J]. Front Pharmacol, 2021, 12: 788558. doi: 10.3389/fphar.2021.788558

    [49]

    Wang W, Zhao J, Gui W, et al. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease[J]. Br J Pharmacol, 2018, 175(3): 469-484. doi: 10.1111/bph.14095

    [50]

    Tang Y, Zhang J, Li J, et al. Turnover of bile acids in liver, serum and caecal content by high-fat diet feeding affects hepatic steatosis in rats[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(10): 1293-1304.

    [51]

    艾琴英, 吉燕华, 傅灵艳, 等. 黄连解毒汤干预高脂血症大小鼠肠道菌群研究进展[J]. 江西中医药大学学报, 2019, 31(2): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-XYXB201902034.htm

    [52]

    董亚倩, 杨娜, 李晓凯, 等. 口服难吸收中药有效成分起效机制的研究进展[J]. 中草药, 2020, 51(3): 769-779. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202003030.htm

  • 加载中
计量
  • 文章访问数:  380
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2023-06-21
刊出日期:  2023-12-15

目录