胆汁酸及其受体在溃疡性结肠炎中的作用及中药对其干预的研究进展

靳蕊, 李磊. 胆汁酸及其受体在溃疡性结肠炎中的作用及中药对其干预的研究进展[J]. 中国中西医结合消化杂志, 2023, 31(12): 951-954. doi: 10.3969/j.issn.1671-038X.2023.12.08
引用本文: 靳蕊, 李磊. 胆汁酸及其受体在溃疡性结肠炎中的作用及中药对其干预的研究进展[J]. 中国中西医结合消化杂志, 2023, 31(12): 951-954. doi: 10.3969/j.issn.1671-038X.2023.12.08
JIN Rui, LI Lei. Advances in the study of the role of bile acids and their receptors in ulcerative colitis and traditional Chinese herbal medicine intervention[J]. Chin J Integr Tradit West Med Dig, 2023, 31(12): 951-954. doi: 10.3969/j.issn.1671-038X.2023.12.08
Citation: JIN Rui, LI Lei. Advances in the study of the role of bile acids and their receptors in ulcerative colitis and traditional Chinese herbal medicine intervention[J]. Chin J Integr Tradit West Med Dig, 2023, 31(12): 951-954. doi: 10.3969/j.issn.1671-038X.2023.12.08

胆汁酸及其受体在溃疡性结肠炎中的作用及中药对其干预的研究进展

详细信息

Advances in the study of the role of bile acids and their receptors in ulcerative colitis and traditional Chinese herbal medicine intervention

More Information
  • 胆汁酸作为一类重要的微生物代谢物,在溃疡性结肠炎病程中发生改变,且与肠道微生物群之间存在密切关联。为进一步了解肠道微生物-胆汁酸-宿主轴对溃疡性结肠炎的影响,本文全面阐明胆汁酸合成、代谢及重吸收过程,并进一步综述溃疡性结肠炎中胆汁酸池改变以及其介导的信号传导。此外,我们通过总结中药介导胆汁酸改变治疗溃疡性结肠炎的研究进展,以期为溃疡性结肠炎的治疗提供新的见解。
  • 加载中
  • [1]

    Ticho AL, Malhotra P, Dudeja PK, et al. Intestinal Absorption of Bile Acids in Health and Disease[J]. Compr Physiol, 2019, 10(1): 21-56.

    [2]

    Guo X, Okpara ES, Hu W, et al. Interactive Relationships between Intestinal Flora and Bile Acids[J]. Int J Mol Sci, 2022, 23(15): 8343. doi: 10.3390/ijms23158343

    [3]

    Kim DH, Cheon JH. Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies[J]. Immune Netw, 2017, 17(1): 25-40. doi: 10.4110/in.2017.17.1.25

    [4]

    Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. doi: 10.1038/s41586-019-1237-9

    [5]

    Yang ZH, Liu F, Zhu XR, et al. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis[J]. World J Gastroenterol, 2021, 27(24): 3609-3629. doi: 10.3748/wjg.v27.i24.3609

    [6]

    Vich Vila A, Hu S, Andreu-Sánchez S, et al. Faecal metabolome and its determinants in inflammatory bowel disease[J]. Gut, 2023, 72(8): 1472-1485. doi: 10.1136/gutjnl-2022-328048

    [7]

    Axelson M, Ellis E, Mörk B, et al. Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid[J]. Hepatology, 2000, 31(6): 1305-1312. doi: 10.1053/jhep.2000.7877

    [8]

    Hylemon PB, Zhou H, Pandak WM, et al. Bile acids as regulatory molecules[J]. J Lipid Res, 2009, 50(8): 1509-1520. doi: 10.1194/jlr.R900007-JLR200

    [9]

    Schwarz M, Russell DW, Dietschy JM, et al. Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia[J]. J Lipid Res, 1998, 39(9): 1833-1843. doi: 10.1016/S0022-2275(20)32171-4

    [10]

    Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases[J]. Nat Rev Drug Discov, 2008, 7(8): 678-693. doi: 10.1038/nrd2619

    [11]

    Duane WC, Javitt NB. 27-hydroxycholesterol: production rates in normal human subjects[J]. J Lipid Res, 1999, 40(7): 1194-1199. doi: 10.1016/S0022-2275(20)33481-7

    [12]

    Wahlström A, Sayin SI, Marschall HU, et al. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism[J]. Cell Metab, 2016, 24(1): 41-50. doi: 10.1016/j.cmet.2016.05.005

    [13]

    Li-Hawkins J, Gåfvels M, Olin M, et al. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice[J]. J Clin Invest, 2002, 110(8): 1191-200. doi: 10.1172/JCI0216309

    [14]

    Chiang JY. Bile acid metabolism and signaling[J]. Compr Physiol, 2013, 3(3): 1191-212.

    [15]

    Hegyi P, Maléth J, Walters JR, et al. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease[J]. Physiol Rev, 2018, 98(4): 1983-2023. doi: 10.1152/physrev.00054.2017

    [16]

    Hofmann AF. The continuing importance of bile acids in liver and intestinal disease[J]. Arch Intern Med, 1999, 159(22): 2647-2658. doi: 10.1001/archinte.159.22.2647

    [17]

    Lin S, Wang S, Wang P, et al. Bile acids and their receptors in regulation of gut health and diseases[J]. Prog Lipid Res, 2023, 89: 101210. doi: 10.1016/j.plipres.2022.101210

    [18]

    Voronova V, Sokolov V, Al-Khaifi A, et al. A Physiology-Based Model of Bile Acid Distribution and Metabolism Under Healthy and Pathologic Conditions in Human Beings[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(1): 149-170. doi: 10.1016/j.jcmgh.2020.02.005

    [19]

    Singh J, Metrani R, Shivanagoudra SR, et al. Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds[J]. J Agric Food Chem, 2019, 67(33): 9124-9138. doi: 10.1021/acs.jafc.8b07306

    [20]

    Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria[J]. J Lipid Res, 2006, 47(2): 241-259. doi: 10.1194/jlr.R500013-JLR200

    [21]

    Thomas JP, Modos D, Rushbrook SM, et al. The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease[J]. Front Immunol, 2022, 13: 829525. doi: 10.3389/fimmu.2022.829525

    [22]

    Biagioli M, Marchianò S, Carino A, et al. Bile Acids Activated Receptors in Inflammatory Bowel Disease[J]. Cells, 2021, 10(6): 1281. doi: 10.3390/cells10061281

    [23]

    Li N, Zhan S, Tian Z, et al. Alterations in Bile Acid Metabolism Associated With Inflammatory Bowel Disease[J]. Inflamm Bowel Dis, 2021, 27(9): 1525-1540. doi: 10.1093/ibd/izaa342

    [24]

    Sommersberger S, Gunawan S, Elger T, et al. Altered fecal bile acid composition in active ulcerative colitis[J]. Lipids Health Dis, 2023, 22(1): 199. doi: 10.1186/s12944-023-01971-4

    [25]

    Liu C, Zhan S, Li N, et al. Bile acid alterations associated with indolent course of inflammatory bowel disease[J]. Scand J Gastroenterol, 2023, 58(9): 988-997. doi: 10.1080/00365521.2023.2200518

    [26]

    Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids[J]. Science, 1999, 284(5418): 1362-1365. doi: 10.1126/science.284.5418.1362

    [27]

    Xie W, Radominska-Pandya A, Shi Y, et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids[J]. Proc Natl Acad Sci U S A, 2001, 98(6): 3375-3380. doi: 10.1073/pnas.051014398

    [28]

    Makishima M, Lu TT, Xie W, et al. Vitamin D receptor as an intestinal bile acid sensor[J]. Science, 2002, 296(5571): 1313-1316. doi: 10.1126/science.1070477

    [29]

    Sonoda J, Xie W, Rosenfeld JM, et al. Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor(PXR)[J]. Proc Natl Acad Sci U S A, 2002, 99(21): 13801-13806. doi: 10.1073/pnas.212494599

    [30]

    Fiorucci S, Carino A, Baldoni M, et al. Bile Acid Signaling in Inflammatory Bowel Diseases[J]. Dig Dis Sci, 2021, 66(3): 674-693. doi: 10.1007/s10620-020-06715-3

    [31]

    Shin DJ, Wang L. Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors[J]. Handb Exp Pharmacol, 2019, 256: 51-72.

    [32]

    Denson LA, Sturm E, Echevarria W, et al. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp[J]. Gastroenterology, 2001, 121(1): 140-147. doi: 10.1053/gast.2001.25503

    [33]

    Goodwin B, Jones SA, Price RR, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis[J]. Mol Cell, 2000, 6(3): 517-526. doi: 10.1016/S1097-2765(00)00051-4

    [34]

    Torres J, Bao X, Iuga AC, et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia[J]. Inflamm Bowel Dis, 2013, 19(2): 275-282. doi: 10.1097/MIB.0b013e318286ff2e

    [35]

    Gadaleta RM, van Erpecum KJ, Oldenburg B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut, 2011, 60(4): 463-472. doi: 10.1136/gut.2010.212159

    [36]

    Vavassori P, Mencarelli A, Renga B, et al. The bile acid receptor FXR is a modulator of intestinal innate immunity[J]. J Immunol, 2009, 183(10): 6251-6261. doi: 10.4049/jimmunol.0803978

    [37]

    Gadaleta RM, Oldenburg B, Willemsen EC, et al. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-κB signaling in the intestine[J]. Biochimica Et Biophysica Acta, 2011, 1812(8): 851-858. doi: 10.1016/j.bbadis.2011.04.005

    [38]

    Massafra V, Ijssennagger N, Plantinga M, et al. Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis[J]. Biochimica Et Biophysica Acta, 2016, 1862(2): 166-173. doi: 10.1016/j.bbadis.2015.11.001

    [39]

    Jia YQ, Yuan ZW, Zhang XS, et al. Total alkaloids of Sophora alopecuroides L. ameliorated murine colitis by regulating bile acid metabolism and gut microbiota[J]. J Ethnopharmacol, 2020, 255: 112775. doi: 10.1016/j.jep.2020.112775

    [40]

    Li XH, Liu L, Wu WZ. Trans-Anethole Alleviates DSS-Induced Ulcerative Colitis by Remodeling the Intestinal Flora to Regulate Immunity and Bile Acid Metabolism[J]. Mediators Inflamm, 2023, 2023: 4188510.

    [41]

    Wang J, Wang X, Ma X, et al. Therapeutic effect of Patrinia villosa on TNBS-induced ulcerative colitis via metabolism, vitamin D receptor and NF-κB signaling pathways[J]. J Ethnopharmacol, 2022, 288: 114989. doi: 10.1016/j.jep.2022.114989

    [42]

    Feng P, Li Q, Liu L, et al. Crocetin Prolongs Recovery Period of DSS-Induced Colitis via Altering Intestinal Microbiome and Increasing Intestinal Permeability[J]. Int J Mol Sci, 2022, 23(7): 3832. doi: 10.3390/ijms23073832

    [43]

    Sun X, Zhang Y, Cheng G, et al. Berberine improves DSS-induced colitis in mice by modulating the fecal-bacteria-related bile acid metabolism[J]. Biomed Pharmacother, 2023, 167: 115430. doi: 10.1016/j.biopha.2023.115430

    [44]

    Li L, Wang Y, Zhao L, et al. Sanhuang xiexin decoction ameliorates secondary liver injury in DSS-induced colitis involve regulating inflammation and bile acid metabolism[J]. J Ethnopharmacol, 2022, 299: 115682. doi: 10.1016/j.jep.2022.115682

    [45]

    Bai J, Xiong T, Wang X, et al. Potential mechanisms of Lian-Zhi-Fan solution for TNBS-induced ulcerative colitis in rats via a metabolomics approach[J]. Front Pharmacol, 2022, 13: 1014117. doi: 10.3389/fphar.2022.1014117

    [46]

    Liu M, Wang Z, Liu X, et al. Therapeutic effect of Yiyi Fuzi Baijiang formula on TNBS-induced ulcerative colitis via metabolism and Th17/Treg cell balance[J]. J Ethnopharmacol, 2023, 309: 116301. doi: 10.1016/j.jep.2023.116301

    [47]

    Wu Y, Zheng Y, Wang X, et al. Ginseng-Containing Sijunzi Decoction Ameliorates Ulcerative Colitis by Orchestrating Gut Homeostasis in Microbial Modulation and Intestinal Barrier Integrity[J]. Am J Chin Med, 2023, 51(3): 677-699. doi: 10.1142/S0192415X23500325

  • 加载中
计量
  • 文章访问数:  512
  • PDF下载数:  430
  • 施引文献:  0
出版历程
收稿日期:  2023-10-30
刊出日期:  2023-12-15

目录