-
摘要: 肠黏膜炎又称肠道黏膜屏障损伤,是放化疗常见的剂量反应性毒性。以腹泻、疼痛、溃疡和营养不良为主要临床特征,严重者可出现水电解质紊乱,最终导致化疗中断,增加病死率。化疗相关肠黏膜损伤的发病机制多样,临床缺乏行之有效的治疗手段。近年来,越来越多的研究证实肠道菌群在化疗相关肠黏膜损伤的发生、发展中扮演着重要角色,但肠道菌群如何调控化疗相关肠黏膜损伤的具体机制尚不清楚。因此,本文从肠道菌群角度阐述其对化疗相关肠黏膜损伤的常见病理反应(炎症、氧化应激、肠黏膜屏障损伤)的调控作用,并以肠道菌群为载体,探讨潜在的治疗手段,为临床治疗与基础实验提供理论参考。Abstract: Intestinal mucosal inflammation, also known as intestinal mucosal barrier injury, is a common dose responsive toxicity of radiotherapy and chemotherapy. Diarrhea, pain, ulcers and malnutrition are the main clinical features, and water and electrolyte disorders occur in severe cases, which eventually lead to the interruption of chemotherapy and increase cancer mortality. The pathogenesis of chemotherapy related intestinal mucosal injury is diverse, and there is a lack of effective clinical treatment methods. In recent years, an increasing number of studies have confirmed that gut microbiota plays an important role in the occurrence and development of chemotherapy related intestinal mucosal injury. However, the specific mechanism of how intestinal flora regulates chemotherapy-related intestinal mucosal injury remains unclear. Therefore, from the perspective of intestinal flora, this paper describes its regulatory effect on common pathological reactions(inflammation, oxidative stress, intestinal mucosal barrier damage) associated with chemotherapy, and uses intestinal flora as a carrier to explore potential therapeutic means, providing important theoretical references for clinical treatment and basic experiments.
-
-
[1] Cronin KA, Lake AJ, Scott S, et al. Annual Report to the Nation on the Status of Cancer, partⅠ: National cancer statistics[J]. Cancer, 2018, 124: 2785-2800. doi: 10.1002/cncr.31551
[2] Keefe DM, Elting LS, Nguyen HT, et al. Risk and outcomes of chemotherapy-induced diarrhea(CID)among patients with colorectal cancer receiving multi-cycle chemotherapy[J]. Cancer Chemother Pharmacol, 2014, 74: 675-680. doi: 10.1007/s00280-014-2526-5
[3] Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040. doi: 10.1007/s10482-020-01474-7
[4] Montassier E, Gastinne T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Aliment Pharm Ther, 2015, 42(5): 515-528. doi: 10.1111/apt.13302
[5] Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy[J]. Nat Rev Clin Oncol, 2023, 20(7): 429-452. doi: 10.1038/s41571-023-00766-x
[6] Motoori M, Yano M, Miyata H, et al. Randomized study of the effect of synbiotics during neoadjuvant chemotherapy on adverse events in esophageal cancer patients[J]. Clin Nutr, 2017, 36(1): 93-99. doi: 10.1016/j.clnu.2015.11.008
[7] Rajagopala SV, Singh H, Yu Y, et al. Persistent Gut Microbial Dysbiosis in Children with Acute Lymphoblastic Leukemia(ALL)During Chemotherapy[J]. Microb Ecol, 2020, 79(4): 1034-1043. doi: 10.1007/s00248-019-01448-x
[8] Hou X, Zheng Z, Wei J, et al. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer[J]. Front Immunol, 2022, 13: 1030745. doi: 10.3389/fimmu.2022.1030745
[9] Kon R, Ikarashi N, Yamaguchi A, et al. Green tea extract prevents CPT-11-induced diarrhea by regulating the gut microbiota[J]. Sci Rep, 2023, 13(1): 6537. doi: 10.1038/s41598-023-33731-w
[10] Yan F, Cao H, Cover TL, et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth[J]. Gastroenterology, 2007, 132: 562-575. doi: 10.1053/j.gastro.2006.11.022
[11] Wu J, Gan Y, Li M, et al. Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-κB pathway and regulation of microbiota[J]. Biomed Pharmacother, 2020, 124: 109883. doi: 10.1016/j.biopha.2020.109883
[12] Zhou B, Xia X, Wang P, et al. Induction and Amelioration of Methotrexate-Induced Gastrointestinal Toxicity are Related to Immune Response and Gut Microbiota[J]. EBioMedicine, 2018, 33: 122-133. doi: 10.1016/j.ebiom.2018.06.029
[13] Sonis ST. The pathobiology of mucositis[J]. Nat Rev Cancer, 2004, 4: 277-284. doi: 10.1038/nrc1318
[14] Wang Z, Sun X, Wang W, et al. NF-κB-coupled IL17 mediates inflammatory signaling and intestinal inflammation in Artemia sinica[J]. Fish Shellfish Immunol, 2022, 128: 38-49. doi: 10.1016/j.fsi.2022.07.035
[15] Justino PFC, Franco AX, Pontier-Bres R, et al. Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-κB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic[J]. Cytokine, 2020, 125: 154791. doi: 10.1016/j.cyto.2019.154791
[16] Gao Y, Sun Q, Yang X, et al. Orally administered salecan ameliorates methotrexate-induced intestinal mucositis in mice[J]. Cancer Chemother Pharmacol, 2019, 84(1): 105-116. doi: 10.1007/s00280-019-03854-x
[17] Wu HY, Mao XF, Fan H, et al. p38β Mitogen-Activated Protein Kinase Signaling Mediates Exenatide-Stimulated Microglial-Endorphin Expression[J]. Mol Pharmacol, 2017, 91(5): 451-463. doi: 10.1124/mol.116.107102
[18] Volonte D, Zou H, Bartholomew JN, et al. Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6(IL-6)[J]. J Biol Chem, 2015, 290(7): 4202-4214. doi: 10.1074/jbc.M114.598268
[19] Shi M, Yue Y, Ma C, et al. Pasteurized Akkermansia muciniphila Ameliorate the LPS-Induced Intestinal Barrier Dysfunction via Modulating AMPK and NF-κB through TLR2 in Caco-2 Cell[J]. Nutrients, 2022, 14(4): 764. doi: 10.3390/nu14040764
[20] Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions[J]. Anim Sci J, 2020, 91(1): e13357. doi: 10.1111/asj.13357
[21] Song B, Zheng C, Zha C, et al. Dietary leucine supplementation improves intestinal health of mice through intestinal SIgA secretion[J]. J Appl Microbiol, 2020, 128(2): 574-583. doi: 10.1111/jam.14464
[22] Burger-van Paassen N, Vincent A, Puiman PJ, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection[J]. Biochem J, 2009, 420: 211-219. doi: 10.1042/BJ20082222
[23] van Zyl WF, Deane SM, Dicks LMT. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria[J]. Gut Microbes, 2020, 12(1): 1831339. doi: 10.1080/19490976.2020.1831339
[24] Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C, et al. Probiotic Supplementation Decreases Chemotherapy-induced Gastrointestinal Side Effects in Patients With Acute Leukemia[J]. J Pediatric Hematol Oncol, 2019, 41(6): 468-472. doi: 10.1097/MPH.0000000000001497
[25] Linn YH, Thu KK, Win NHH, et al. Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea Among Cervical Cancer Patients: a Randomized Double-Blind Placebo-Controlled Study[J]. Probiotics Antimicrob Proteins, 2019, 11(2): 638-647. doi: 10.1007/s12602-018-9408-9
[26] Goldenberg JZ, Ma SS, Saxton JD, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children[J]. Cochrane Database Syst Rev, 2013, 5: CD006095.
[27] Chen HT, Zhang F, Li RR, et al. Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota[J]. Biomed Pharmacother, 2020, 124: 109829. doi: 10.1016/j.biopha.2020.109829
[28] Li HL, Lu L, Wang XS, et al. Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis[J]. Front Cell Infect Microbiol, 2017, 7: 455. doi: 10.3389/fcimb.2017.00455
[29] Gan Y, Ai G, Wu J, et al. Patchouli oil ameliorates 5-fluorouracil-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport[J]. J Ethnopharmacol, 2020, 250: 112519. doi: 10.1016/j.jep.2019.112519
[30] Zhang L, Jin Y, Peng J, et al. Qingjie Fuzheng Granule attenuates 5-fluorouracil-induced intestinal mucosal damage[J]. Biomed Pharmacother, 2019, 118: 109223. doi: 10.1016/j.biopha.2019.109223
-
计量
- 文章访问数: 915
- PDF下载数: 330
- 施引文献: 0