肠道微生物在化疗相关肠黏膜损伤中的作用

卢冬雪, 严晶, 吴华. 肠道微生物在化疗相关肠黏膜损伤中的作用[J]. 中国中西医结合消化杂志, 2024, 32(9): 830-833. doi: 10.3969/j.issn.1671-038X.2024.09.17
引用本文: 卢冬雪, 严晶, 吴华. 肠道微生物在化疗相关肠黏膜损伤中的作用[J]. 中国中西医结合消化杂志, 2024, 32(9): 830-833. doi: 10.3969/j.issn.1671-038X.2024.09.17
LU Dongxue, YAN Jing, WU Hua. Role of intestinal microbes in chemotherapy-associated intestinal mucosal injury[J]. Chin J Integr Tradit West Med Dig, 2024, 32(9): 830-833. doi: 10.3969/j.issn.1671-038X.2024.09.17
Citation: LU Dongxue, YAN Jing, WU Hua. Role of intestinal microbes in chemotherapy-associated intestinal mucosal injury[J]. Chin J Integr Tradit West Med Dig, 2024, 32(9): 830-833. doi: 10.3969/j.issn.1671-038X.2024.09.17

肠道微生物在化疗相关肠黏膜损伤中的作用

  • 基金项目:
    江苏省普通高等学校基础科学(自然科学)研究面上项目(No:23KJB360013)
详细信息

Role of intestinal microbes in chemotherapy-associated intestinal mucosal injury

More Information
  • 肠黏膜炎又称肠道黏膜屏障损伤,是放化疗常见的剂量反应性毒性。以腹泻、疼痛、溃疡和营养不良为主要临床特征,严重者可出现水电解质紊乱,最终导致化疗中断,增加病死率。化疗相关肠黏膜损伤的发病机制多样,临床缺乏行之有效的治疗手段。近年来,越来越多的研究证实肠道菌群在化疗相关肠黏膜损伤的发生、发展中扮演着重要角色,但肠道菌群如何调控化疗相关肠黏膜损伤的具体机制尚不清楚。因此,本文从肠道菌群角度阐述其对化疗相关肠黏膜损伤的常见病理反应(炎症、氧化应激、肠黏膜屏障损伤)的调控作用,并以肠道菌群为载体,探讨潜在的治疗手段,为临床治疗与基础实验提供理论参考。
  • 加载中
  • [1]

    Cronin KA, Lake AJ, Scott S, et al. Annual Report to the Nation on the Status of Cancer, partⅠ: National cancer statistics[J]. Cancer, 2018, 124: 2785-2800. doi: 10.1002/cncr.31551

    [2]

    Keefe DM, Elting LS, Nguyen HT, et al. Risk and outcomes of chemotherapy-induced diarrhea(CID)among patients with colorectal cancer receiving multi-cycle chemotherapy[J]. Cancer Chemother Pharmacol, 2014, 74: 675-680. doi: 10.1007/s00280-014-2526-5

    [3]

    Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040. doi: 10.1007/s10482-020-01474-7

    [4]

    Montassier E, Gastinne T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome[J]. Aliment Pharm Ther, 2015, 42(5): 515-528. doi: 10.1111/apt.13302

    [5]

    Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy[J]. Nat Rev Clin Oncol, 2023, 20(7): 429-452. doi: 10.1038/s41571-023-00766-x

    [6]

    Motoori M, Yano M, Miyata H, et al. Randomized study of the effect of synbiotics during neoadjuvant chemotherapy on adverse events in esophageal cancer patients[J]. Clin Nutr, 2017, 36(1): 93-99. doi: 10.1016/j.clnu.2015.11.008

    [7]

    Rajagopala SV, Singh H, Yu Y, et al. Persistent Gut Microbial Dysbiosis in Children with Acute Lymphoblastic Leukemia(ALL)During Chemotherapy[J]. Microb Ecol, 2020, 79(4): 1034-1043. doi: 10.1007/s00248-019-01448-x

    [8]

    Hou X, Zheng Z, Wei J, et al. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer[J]. Front Immunol, 2022, 13: 1030745. doi: 10.3389/fimmu.2022.1030745

    [9]

    Kon R, Ikarashi N, Yamaguchi A, et al. Green tea extract prevents CPT-11-induced diarrhea by regulating the gut microbiota[J]. Sci Rep, 2023, 13(1): 6537. doi: 10.1038/s41598-023-33731-w

    [10]

    Yan F, Cao H, Cover TL, et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth[J]. Gastroenterology, 2007, 132: 562-575. doi: 10.1053/j.gastro.2006.11.022

    [11]

    Wu J, Gan Y, Li M, et al. Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-κB pathway and regulation of microbiota[J]. Biomed Pharmacother, 2020, 124: 109883. doi: 10.1016/j.biopha.2020.109883

    [12]

    Zhou B, Xia X, Wang P, et al. Induction and Amelioration of Methotrexate-Induced Gastrointestinal Toxicity are Related to Immune Response and Gut Microbiota[J]. EBioMedicine, 2018, 33: 122-133. doi: 10.1016/j.ebiom.2018.06.029

    [13]

    Sonis ST. The pathobiology of mucositis[J]. Nat Rev Cancer, 2004, 4: 277-284. doi: 10.1038/nrc1318

    [14]

    Wang Z, Sun X, Wang W, et al. NF-κB-coupled IL17 mediates inflammatory signaling and intestinal inflammation in Artemia sinica[J]. Fish Shellfish Immunol, 2022, 128: 38-49. doi: 10.1016/j.fsi.2022.07.035

    [15]

    Justino PFC, Franco AX, Pontier-Bres R, et al. Modulation of 5-fluorouracil activation of toll-like/MyD88/NF-κB/MAPK pathway by Saccharomyces boulardii CNCM I-745 probiotic[J]. Cytokine, 2020, 125: 154791. doi: 10.1016/j.cyto.2019.154791

    [16]

    Gao Y, Sun Q, Yang X, et al. Orally administered salecan ameliorates methotrexate-induced intestinal mucositis in mice[J]. Cancer Chemother Pharmacol, 2019, 84(1): 105-116. doi: 10.1007/s00280-019-03854-x

    [17]

    Wu HY, Mao XF, Fan H, et al. p38β Mitogen-Activated Protein Kinase Signaling Mediates Exenatide-Stimulated Microglial-Endorphin Expression[J]. Mol Pharmacol, 2017, 91(5): 451-463. doi: 10.1124/mol.116.107102

    [18]

    Volonte D, Zou H, Bartholomew JN, et al. Oxidative stress-induced inhibition of Sirt1 by caveolin-1 promotes p53-dependent premature senescence and stimulates the secretion of interleukin 6(IL-6)[J]. J Biol Chem, 2015, 290(7): 4202-4214. doi: 10.1074/jbc.M114.598268

    [19]

    Shi M, Yue Y, Ma C, et al. Pasteurized Akkermansia muciniphila Ameliorate the LPS-Induced Intestinal Barrier Dysfunction via Modulating AMPK and NF-κB through TLR2 in Caco-2 Cell[J]. Nutrients, 2022, 14(4): 764. doi: 10.3390/nu14040764

    [20]

    Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions[J]. Anim Sci J, 2020, 91(1): e13357. doi: 10.1111/asj.13357

    [21]

    Song B, Zheng C, Zha C, et al. Dietary leucine supplementation improves intestinal health of mice through intestinal SIgA secretion[J]. J Appl Microbiol, 2020, 128(2): 574-583. doi: 10.1111/jam.14464

    [22]

    Burger-van Paassen N, Vincent A, Puiman PJ, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection[J]. Biochem J, 2009, 420: 211-219. doi: 10.1042/BJ20082222

    [23]

    van Zyl WF, Deane SM, Dicks LMT. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria[J]. Gut Microbes, 2020, 12(1): 1831339. doi: 10.1080/19490976.2020.1831339

    [24]

    Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C, et al. Probiotic Supplementation Decreases Chemotherapy-induced Gastrointestinal Side Effects in Patients With Acute Leukemia[J]. J Pediatric Hematol Oncol, 2019, 41(6): 468-472. doi: 10.1097/MPH.0000000000001497

    [25]

    Linn YH, Thu KK, Win NHH, et al. Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea Among Cervical Cancer Patients: a Randomized Double-Blind Placebo-Controlled Study[J]. Probiotics Antimicrob Proteins, 2019, 11(2): 638-647. doi: 10.1007/s12602-018-9408-9

    [26]

    Goldenberg JZ, Ma SS, Saxton JD, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children[J]. Cochrane Database Syst Rev, 2013, 5: CD006095.

    [27]

    Chen HT, Zhang F, Li RR, et al. Berberine regulates fecal metabolites to ameliorate 5-fluorouracil induced intestinal mucositis through modulating gut microbiota[J]. Biomed Pharmacother, 2020, 124: 109829. doi: 10.1016/j.biopha.2020.109829

    [28]

    Li HL, Lu L, Wang XS, et al. Alteration of Gut Microbiota and Inflammatory Cytokine/Chemokine Profiles in 5-Fluorouracil Induced Intestinal Mucositis[J]. Front Cell Infect Microbiol, 2017, 7: 455. doi: 10.3389/fcimb.2017.00455

    [29]

    Gan Y, Ai G, Wu J, et al. Patchouli oil ameliorates 5-fluorouracil-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport[J]. J Ethnopharmacol, 2020, 250: 112519. doi: 10.1016/j.jep.2019.112519

    [30]

    Zhang L, Jin Y, Peng J, et al. Qingjie Fuzheng Granule attenuates 5-fluorouracil-induced intestinal mucosal damage[J]. Biomed Pharmacother, 2019, 118: 109223. doi: 10.1016/j.biopha.2019.109223

  • 加载中
计量
  • 文章访问数:  915
  • PDF下载数:  330
  • 施引文献:  0
出版历程
收稿日期:  2024-02-11
刊出日期:  2024-09-15

目录