胃癌前病变动物模型研究现状及其评价

张泰, 胡蓝烁, 刘炯, 等. 胃癌前病变动物模型研究现状及其评价[J]. 中国中西医结合消化杂志, 2024, 32(5): 412-419. doi: 10.3969/j.issn.1671-038X.2024.05.08
引用本文: 张泰, 胡蓝烁, 刘炯, 等. 胃癌前病变动物模型研究现状及其评价[J]. 中国中西医结合消化杂志, 2024, 32(5): 412-419. doi: 10.3969/j.issn.1671-038X.2024.05.08
ZHANG Tai, HU Lanshuo, LIU Jiong, et al. Summary and evaluation of animal models for precancerous gastric lesions[J]. Chin J Integr Tradit West Med Dig, 2024, 32(5): 412-419. doi: 10.3969/j.issn.1671-038X.2024.05.08
Citation: ZHANG Tai, HU Lanshuo, LIU Jiong, et al. Summary and evaluation of animal models for precancerous gastric lesions[J]. Chin J Integr Tradit West Med Dig, 2024, 32(5): 412-419. doi: 10.3969/j.issn.1671-038X.2024.05.08

胃癌前病变动物模型研究现状及其评价

  • 基金项目:
    提升高水平中医医院临床研究和成果转化能力试点建设项目(No: XYZX0204-03); 中国中医科学院科技创新工程创新团队项目(No: CI2021B005); 国家中医药管理局国家中医药传承与创新团队项目(No: ZYYCXTD-C-202010)
详细信息
    通讯作者: 唐旭东, E-mail: txdly@sina.com
  • 中图分类号: R965.2

Summary and evaluation of animal models for precancerous gastric lesions

More Information
  • 胃癌前病变是胃癌二级预防的关键。构建操作简单、可控性强、稳定性高的胃癌前病变动物模型是深入研究本病发病机制,开展药物干预研究的基础和前提。本文总结、归纳了常用胃癌前病变动物模型造模方法,包括螺杆菌属感染、化学致癌剂诱导、多因素复合诱导以及基因编辑小鼠模型等,并对各种模型的特征、优缺点以及动物模型评价关键问题做简要评述,为胃癌前病变动物模型的建立和应用提供参考。
  • 加载中
  • [1]

    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [2]

    Tan P, Yeoh KG. Genetics and molecular pathogenesis of gastric adenocarcinoma[J]. Gastroenterology, 2015, 149(5): 1153-1162. e3. doi: 10.1053/j.gastro.2015.05.059

    [3]

    Morson BC, Sobin LH, Grundmann E, et al. Precancerous conditions and epithelial dysplasia in the stomach[J]. J Clin Pathol, 1980, 33(8): 711-721. doi: 10.1136/jcp.33.8.711

    [4]

    Song H, Ekheden IG, Zheng ZL, et al. Incidence of gastric cancer among patients with gastric precancerous lesions: observational cohort study in a low risk Western population[J]. BMJ, 2015, 351: h3867.

    [5]

    Watanabe T, Tada M, Nagai H, et al. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils[J]. Gastroenterology, 1998, 115(3): 642-648. doi: 10.1016/S0016-5085(98)70143-X

    [6]

    Lee A, Fox JG, Otto G, et al. A small animal model of human Helicobacter pylori active chronic gastritis[J]. Gastroenterology, 1990, 99(5): 1315-1323. doi: 10.1016/0016-5085(90)91156-Z

    [7]

    Wang TC, Goldenring JR, Dangler C, et al. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection[J]. Gastroenterology, 1998, 114(4): 675-689. doi: 10.1016/S0016-5085(98)70581-5

    [8]

    Fox JG, Sheppard BJ, Dangler CA, et al. Germ-line p53-targeted disruption inhibits helicobacter-induced premalignant lesions and invasive gastric carcinoma through down-regulation of Th1 proinflammatory responses[J]. Cancer Res, 2002, 62(3): 696-702.

    [9]

    Lee A, O'Rourke J, De Ungria MC, et al. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain[J]. Gastroenterology, 1997, 112(4): 1386-1397. doi: 10.1016/S0016-5085(97)70155-0

    [10]

    Cai X, Carlson J, Stoicov C, et al. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice[J]. Gastroenterology, 2005, 128(7): 1937-1952. doi: 10.1053/j.gastro.2005.02.066

    [11]

    Zhang SH, Lee DS, Morrissey R, et al. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model[J]. Cancer Lett, 2015, 359(2): 345-351. doi: 10.1016/j.canlet.2015.01.028

    [12]

    Schoental R. Carcinogenic activity of N-methyl-N-nitroso-N'-nitroguanidine[J]. Nature, 1966, 209(5024): 726-727. doi: 10.1038/209726a0

    [13]

    Abe M, Yamashita S, Kuramoto T, et al. Global expression analysis of N-methyl-N'-nitro-N-nitrosoguanidine-induced rat stomach carcinomas using oligonucleotide microarrays[J]. Carcinogenesis, 2003, 24(5): 861-867. doi: 10.1093/carcin/bgg030

    [14]

    Saito T, Inokuchi K, Takayama S, et al. Sequential morphological changes in N-methyl-N'-nitro-N-nitrosoguanidine carcinogenesis in the glandular stomach of rats[J]. J Natl Cancer Inst, 1970, 44(4): 769-783.

    [15]

    Tatematsu M, Yamamoto M, Shimizu N, et al. Induction of glandular stomach cancers in Helicobacter pylori-sensitive Mongolian gerbils treated with N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine in drinking water[J]. Jpn J Cancer Res, 1998, 89(2): 97-104. doi: 10.1111/j.1349-7006.1998.tb00535.x

    [16]

    Tatematsu M, Ogawa K, Hoshiya T, et al. Induction of adenocarcinomas in the glandular stomach of BALB/c mice treated with N-methyl-N-nitrosourea[J]. Jpn J Cancer Res, 1992, 83(9): 915-918. doi: 10.1111/j.1349-7006.1992.tb01999.x

    [17]

    Tatematsu M, Yamamoto M, Iwata H, et al. Induction of glandular stomach cancers in C3H mice treated with N-methyl-N-nitrosourea in the drinking water[J]. Jpn J Cancer Res, 1993, 84(12): 1258-1264. doi: 10.1111/j.1349-7006.1993.tb02831.x

    [18]

    Yamachika T, Nakanishi H, Inada K, et al. N-methyl-N-nitrosourea concentration-dependent, rather than total intake-dependent, induction of adenocarcinomas in the glandular stomach of BALB/c mice[J]. Jpn J Cancer Res, 1998, 89(4): 385-391. doi: 10.1111/j.1349-7006.1998.tb00575.x

    [19]

    Gaddy JA, Radin JN, Loh JT, et al. High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis[J]. Infect Immun, 2013, 81(6): 2258-2267. doi: 10.1128/IAI.01271-12

    [20]

    Bergin IL, Sheppard BJ, Fox JG. Helicobacter pylori infection and high dietary salt independently induce atrophic gastritis and intestinal Metaplasia in commercially available outbred Mongolian gerbils[J]. Dig Dis Sci, 2003, 48(3): 475-485. doi: 10.1023/A:1022524313355

    [21]

    Fox JG, Dangler CA, Taylor NS, et al. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice[J]. Cancer Res, 1999, 59(19): 4823-4828.

    [22]

    Kodama M, Kodama T, Suzuki H, et al. Effect of rice and salty rice diets on the structure of mouse stomach[J]. Nutr Cancer, 1984, 6(3): 135-147.

    [23]

    Tatematsu M, Takahashi M, Fukushima S, et al. Effects in rats of sodium chloride on experimental gastric cancers induced by N-methyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline-1-oxide[J]. J Natl Cancer Inst, 1975, 55(1): 101-106. doi: 10.1093/jnci/55.1.101

    [24]

    Takahashi M, Kokubo T, Furukawa F, et al. Effect of high salt diet on rat gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine[J]. Gan, 1983, 74(1): 28-34. doi: 10.3760/cma.j.issn.0254-1785.1983.01.011

    [25]

    Takahashi M, Nishikawa A, Furukawa F, et al. Dose-dependent promoting effects of sodium chloride(NaCl)on rat glandular stomach carcinogenesis initiated with N-methyl-N'-nitro-N-nitrosoguanidine[J]. Carcinogenesis, 1994, 15(7): 1429-1432. doi: 10.1093/carcin/15.7.1429

    [26]

    Toyoda T, Tsukamoto T, Yamamoto M, et al. Gene expression analysis of a Helicobacter pylori-infected and high-salt diet-treated mouse gastric tumor model: identification of CD177 as a novel prognostic factor in patients with gastric cancer[J]. BMC Gastroenterol, 2013, 13: 122. doi: 10.1186/1471-230X-13-122

    [27]

    Yamamoto M, Tsukamoto T, Sakai H, et al. p53 knockout mice(-/-)are more susceptible than(+ /-)or(+/+)mice to N-methyl-N-nitrosourea stomach carcinogenesis[J]. Carcinogenesis, 2000, 21(10): 1891-1897. doi: 10.1093/carcin/21.10.1891

    [28]

    Shibata W, Maeda S, Hikiba Y, et al. C-Jun NH2-terminal kinase 1 is a critical regulator for the development of gastric cancer in mice[J]. Cancer Res, 2008, 68(13): 5031-5039. doi: 10.1158/0008-5472.CAN-07-6332

    [29]

    Sakamoto K, Hikiba Y, Nakagawa H, et al. Inhibitor of kappaB kinase beta regulates gastric carcinogenesis via interleukin-1alpha expression[J]. Gastroenterology, 2010, 139(1): 226-238. e6. doi: 10.1053/j.gastro.2010.03.047

    [30]

    Takasu S, Tsukamoto T, Cao XY, et al. Roles of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 expression and beta-catenin activation in gastric carcinogenesis in N-methyl-N-nitrosourea-treated K19-C2mE transgenic mice[J]. Cancer Sci, 2008, 99(12): 2356-2364. doi: 10.1111/j.1349-7006.2008.00983.x

    [31]

    Yin J, Yi JY, Yang C, et al. Chronic atrophic gastritis and intestinal metaplasia induced by high-salt and N-methyl-N'-nitro-N-nitrosoguanidine intake in rats[J]. Exp Ther Med, 2021, 21(4): 315. doi: 10.3892/etm.2021.9746

    [32]

    Nakamura Y, Sakagami T, Yamamoto N, et al. Helicobacter pylori does not promote N-methyl-N-nitrosourea-induced gastric carcinogenesis in SPF C57BL/6 mice[J]. Jpn J Cancer Res, 2002, 93(2): 111-116. doi: 10.1111/j.1349-7006.2002.tb01248.x

    [33]

    Goldenring JR, Ray GS, Coffey RJ, et al. Reversible drug-induced oxyntic atrophy in rats[J]. Gastroenterology, 2000, 118(6): 1080-1093. doi: 10.1016/S0016-5085(00)70361-1

    [34]

    Nam KT, Lee HJ, Sousa JF, et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach[J]. Gastroenterology, 2010, 139(6): 2028-2037. e9. doi: 10.1053/j.gastro.2010.09.005

    [35]

    Huh WJ, Khurana SS, Geahlen JH, et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach[J]. Gastroenterology, 2012, 142(1): 21-24. e7. doi: 10.1053/j.gastro.2011.09.050

    [36]

    Saenz JB, Burclaff J, Mills JC. Modeling murine gastric Metaplasia through tamoxifen-induced acute parietal cell loss[J]. Methods Mol Biol, 2016, 1422: 329-339.

    [37]

    Zavros Y, Eaton KA, Kang WQ, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma[J]. Oncogene, 2005, 24(14): 2354-2366. doi: 10.1038/sj.onc.1208407

    [38]

    Nomura S, Yamaguchi H, Ogawa M, et al. Alterations in gastric mucosal lineages induced by acute oxyntic atrophy in wild-type and gastrin-deficient mice[J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288(2): G362-G375. doi: 10.1152/ajpgi.00160.2004

    [39]

    Tomita H, Takaishi S, Menheniott TR, et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing[J]. Gastroenterology, 2011, 140(3): 879-891. doi: 10.1053/j.gastro.2010.11.037

    [40]

    Tu SP, Bhagat G, Cui GL, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice[J]. Cancer Cell, 2008, 14(5): 408-419. doi: 10.1016/j.ccr.2008.10.011

    [41]

    Syu LJ, El-Zaatari M, Eaton KA, et al. Transgenic expression of interferon-γ in mouse stomach leads to inflammation, metaplasia, and dysplasia[J]. Am J Pathol, 2012, 181(6): 2114-2125. doi: 10.1016/j.ajpath.2012.08.017

    [42]

    Oshima H, Oshima M, Inaba K, et al. Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice[J]. EMBO J, 2004, 23(7): 1669-1678. doi: 10.1038/sj.emboj.7600170

    [43]

    Oshima H, Matsunaga A, Fujimura T, et al. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway[J]. Gastroenterology, 2006, 131(4): 1086-1095. doi: 10.1053/j.gastro.2006.07.014

    [44]

    Leung WK, Wu KC, Wong CY, et al. Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice[J]. Carcinogenesis, 2008, 29(8): 1648-1654. doi: 10.1093/carcin/bgn156

    [45]

    Nguyen TL, Khurana SS, Bellone CJ, et al. Autoimmune gastritis mediated by CD4+T cells promotes the development of gastric cancer[J]. Cancer Res, 2013, 73(7): 2117-2126. doi: 10.1158/0008-5472.CAN-12-3957

    [46]

    Okumura T, Ericksen RE, Takaishi S, et al. K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia[J]. Cancer Res, 2010, 70(21): 8435-8445. doi: 10.1158/0008-5472.CAN-10-1506

    [47]

    Thiem S, Eissmann MF, Elzer J, et al. Stomach-specific activation of oncogenic KRAS and STAT3-dependent inflammation cooperatively promote gastric tumorigenesis in a preclinical model[J]. Cancer Res, 2016, 76(8): 2277-2287. doi: 10.1158/0008-5472.CAN-15-3089

    [48]

    Till JE, Yoon C, Kim BJ, et al. Oncogenic KRAS and p53 loss drive gastric tumorigenesis in mice that can be attenuated by E-cadherin expression[J]. Cancer Res, 2017, 77(19): 5349-5359. doi: 10.1158/0008-5472.CAN-17-0061

    [49]

    Choi E, Hendley AM, Bailey JM, et al. Expression of activated ras in gastric chief cells of mice leads to the full spectrum of metaplastic lineage transitions[J]. Gastroenterology, 2016, 150(4): 918-930. e13. doi: 10.1053/j.gastro.2015.11.049

    [50]

    Ito K, Chuang LSH, Ito T, et al. Loss of Runx3 is a key event in inducing precancerous state of the stomach[J]. Gastroenterology, 2011, 140(5): 1536-1546. e8. doi: 10.1053/j.gastro.2011.01.043

    [51]

    Kuzushita N, Rogers AB, Monti NA, et al. p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice[J]. Gastroenterology, 2005, 129(5): 1544-1556. doi: 10.1053/j.gastro.2005.07.056

    [52]

    Costa L, Corre S, Michel V, et al. USF1 defect drives p53 degradation during Helicobacter pylori infection and accelerates gastric carcinogenesis[J]. Gut, 2020, 69(9): 1582-1591. doi: 10.1136/gutjnl-2019-318640

    [53]

    Suzuki K, Sentani K, Tanaka H, et al. Deficiency of stomach-type claudin-18 in mice induces gastric tumor formation independent of H pylori infection[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(1): 119-142. doi: 10.1016/j.jcmgh.2019.03.003

    [54]

    Nam KT, Lee HJ, Mok H, et al. Amphiregulin-deficient mice develop spasmolytic polypeptide expressing metaplasia and intestinal metaplasia[J]. Gastroenterology, 2009, 136(4): 1288-1296. doi: 10.1053/j.gastro.2008.12.037

    [55]

    Liu XM, Li TL, Ma ZY, et al. SLC26A9 deficiency causes gastric intraepithelial neoplasia in mice and aggressive gastric cancer in humans[J]. Cell Oncol, 2022, 45(3): 381-398. doi: 10.1007/s13402-022-00672-x

    [56]

    Katsha A, Soutto M, Sehdev V, et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia[J]. Gastroenterology, 2013, 145(6): 1312-1322. e1-8. doi: 10.1053/j.gastro.2013.08.050

    [57]

    Keeley TM, Samuelson LC. Cytodifferentiation of the postnatal mouse stomach in normal and Huntingtin-interacting protein 1-related-deficient mice[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 299(6): G1241-G1251. doi: 10.1152/ajpgi.00239.2010

    [58]

    Zeng X, Yang MH, Ye TB, et al. Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3(NLRP3)-mediated IL-33 activation via a reactive oxygen species(ROS)-NRF2-Heme oxygenase-1(HO-1)-NF-кB axis[J]. Free Radic Biol Med, 2023, 202: 46-61. doi: 10.1016/j.freeradbiomed.2023.03.024

    [59]

    Zuo XS, Deguchi Y, Xu WG, et al. PPARD and interferon gamma promote transformation of gastric progenitor cells and tumorigenesis in mice[J]. Gastroenterology, 2019, 157(1): 163-178. doi: 10.1053/j.gastro.2019.03.018

    [60]

    Judd LM, Alderman BM, Howlett M, et al. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130[J]. Gastroenterology, 2004, 126(1): 196-207. doi: 10.1053/j.gastro.2003.10.066

    [61]

    Nam KT, O'Neal R, Lee YS, et al. Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature[J]. Lab Invest, 2012, 92(6): 883-895. doi: 10.1038/labinvest.2012.47

    [62]

    Banerjee A, Thamphiwatana S, Carmona EM, et al. Deficiency of the myeloid differentiation primary response molecule MyD88 leads to an early and rapid development of Helicobacter-induced gastric malignancy[J]. Infect Immun, 2014, 82(1): 356-363. doi: 10.1128/IAI.01344-13

    [63]

    Neumeyer V, Vieth M, Gerhard M, et al. Mutated Rnf43 aggravates Helicobacter pylori-induced gastric pathology[J]. Cancers, 2019, 11(3): 372. doi: 10.3390/cancers11030372

    [64]

    Douchi D, Yamamura A, Matsuo I, et al. Induction of GastricCancer by Successive Oncogenic Activation in the Corpus[J]. Gastroenterology, 2021, 161(6): 1907-1923. e26. doi: 10.1053/j.gastro.2021.08.013

    [65]

    Seidlitz T, Chen YT, Uhlemann H, et al. Mouse models of human gastric cancer subtypes with stomach-specific CreERT2-mediated pathway alterations[J]. Gastroenterology, 2019, 157(6): 1599-1614. e2. doi: 10.1053/j.gastro.2019.09.026

    [66]

    Li XB, Yang G, Zhu L, et al. Gastric Lgr5(+)stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice[J]. Cell Res, 2016, 26(7): 838-849. doi: 10.1038/cr.2016.47

    [67]

    Hayakawa Y, Ariyama H, Stancikova J, et al. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche[J]. Cancer Cell, 2015, 28(6): 800-814. doi: 10.1016/j.ccell.2015.10.003

    [68]

    Fang KT, Hung H, Lau NYS, et al. Development of a genetically engineered mouse model recapitulating LKB1 and PTEN deficiency in gastric cancer pathogenesis[J]. Cancers, 2023, 15(24): 5893. doi: 10.3390/cancers15245893

    [69]

    Dixon MF, Genta RM, Yardley JH, et al. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994[J]. Am J Surg Pathol, 1996, 20(10): 1161-1181. doi: 10.1097/00000478-199610000-00001

  • 加载中
计量
  • 文章访问数:  465
  • PDF下载数:  254
  • 施引文献:  0
出版历程
收稿日期:  2024-03-25
刊出日期:  2024-05-15

目录