Current status of research on serologic markers in monitoring inflammatory bowel disease activity
-
摘要: 炎症性肠病(inflammatory bowel disease,IBD)是以胃肠道慢性炎症为特征的疾病,主要包括两种亚型,即克罗恩病(Crohn’s disease,CD)和溃疡性结肠炎(ulcerative colitis,UC)。内镜检查结合活检是用于IBD诊断和疾病管理最有效的方法,但其昂贵且具有侵入性,有肠穿孔和出血的风险。近年来研究人员在不断探索可替代的、非侵入性生物标志物作为监测IBD活动性和疾病管理的工具。血清学检测是一种成熟的诊断各种免疫性疾病的工具,其在IBD中的应用主要集中在确诊的患者身上,很少有人研究其作为疑似IBD患者主要诊断工具的潜力。本文介绍目前在IBD实验室检测中具有重要临床意义的非侵入性血清学标志物,这些血清学标志物可用于辅助诊断IBD并监测疾病的活动性,有助于临床医生精准把控疾病进展并及时调整治疗方案。Abstract: Inflammatory bowel disease(IBD) is a disease characterised by chronic inflammation of the gastrointestinal tract and consists of two main subtypes, Crohn's disease(CD) and ulcerative colitis(UC). Endoscopy combined with biopsy is the most effective method used for the diagnosis and disease management of IBD, but it is expensive and invasive, with the risk of bowel perforation and bleeding, and in recent years researchers have been exploring alternative non-invasive biomarkers as tools for monitoring the activity of IBD and disease management. Serological testing is a well-established tool for the diagnosis of a variety of immunological disorders and its use in IBD has been focused on patients with a confirmed diagnosis, with little research into its potential as a primary diagnostic tool for patients with suspected IBD. This article describes the current non-invasive serological markers of clinical importance in laboratory testing for IBD, which can be used to aid in the diagnosis of IBD and monitor disease activity, helping clinicians to accurately manage disease progression and make timely adjustments to treatment regimens.
-
Key words:
- inflammatory bowel disease /
- Crohn's disease /
- ulcerative colitis /
- serological markers
-
-
[1] Flynn S, Eisenstein S. Inflammatory Bowel Disease Presentation and Diagnosis[J]. Surg Clin North Am, 2019, 99(6): 1051-1062. doi: 10.1016/j.suc.2019.08.001
[2] Kaenkumchorn T, Wahbeh G. Ulcerative Colitis: Making the Diagnosis[J]. Gastroenterol Clin North Am, 2020, 49(4): 655-669. doi: 10.1016/j.gtc.2020.07.001
[3] Rubin DT, Ananthakrishnan AN, Siegel CA, et al. ACG Clinical Guideline: Ulcerative Colitis in Adults[J]. Am J Gastroenterol, 2019, 114(3): 384-413. doi: 10.14309/ajg.0000000000000152
[4] Tillett WS, Francis T. Serological Reactions In Pneumonia With A Non-Protein Somatic Fraction Of Pneumococcus[J]. J Exp Med, 1930, 52(4): 561-571. doi: 10.1084/jem.52.4.561
[5] Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection[J]. Front Immunol, 2018, 9: 754. doi: 10.3389/fimmu.2018.00754
[6] Nehring SM, Goyal A, Patel BC. C Reactive Protein[M]. Treasure Island(FL): StatPearls Publishing, 2023: 1-4.
[7] Bray C, Bell LN, Liang H, et al. Erythrocyte Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in Clinical Medicine[J]. WMJ, 2016, 115(6): 317-321.
[8] Solem CA, Loftus EV Jr, Tremaine WJ, et al. Correlation of C-reactive protein with clinical, endoscopic, histologic, and radiographic activity in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2005, 11(8): 707-712. doi: 10.1097/01.MIB.0000173271.18319.53
[9] Peyrin-Biroulet L, Gonzalez F, Dubuquoy L, et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn's disease[J]. Gut, 2012, 61(1): 78-85. doi: 10.1136/gutjnl-2011-300370
[10] Riviere P, Le Chevillier A, Rullier A, et al. Deep ulcers are associated with increased C-reactive protein in active ulcerative colitis[J]. Dig Liver Dis, 2023, 55(9): 1194-1200. doi: 10.1016/j.dld.2023.05.004
[11] Mazlam MZ, Hodgson HJ. Interrelations between interleukin-6, interleukin-1 beta, plasma C-reactive protein values, and in vitro C-reactive protein generation in patients with inflammatory bowel disease[J]. Gut, 1994, 35(1): 77-83. doi: 10.1136/gut.35.1.77
[12] Engstrom J, Lonnkvist M, Befrits R, et al. Comparison of fecal calprotectin and serum C-reactive protein in early prediction of outcome to infliximab induction therapy[J]. Scand J Gastroenterol, 2019, 54(9): 1081-1088. doi: 10.1080/00365521.2019.1660402
[13] Hart PC, Rajab IM, Alebraheem M, et al. C-Reactive Protein and Cancer-Diagnostic and Therapeutic Insights[J]. Front Immunol, 2020, 11: 595835. doi: 10.3389/fimmu.2020.595835
[14] Tishkowski K, Gupta V. Erythrocyte Sedimentation Rate[M]. Treasure Island(FL): StatPearls Publishing, 2023: 1-10.
[15] Dai C, Jiang M, Sun MJ, et al. Fecal Lactoferrin for Assessment of Inflammatory Bowel Disease Activity: A Systematic Review and Meta-Analysis[J]. J Clin Gastroenterol, 2020, 54(6): 545-553. doi: 10.1097/MCG.0000000000001212
[16] Lapic I, Padoan A, Bozzato D, et al. Erythrocyte Sedimentation Rate and C-Reactive Protein in Acute Inflammation[J]. Am J Clin Pathol, 2020, 153(1): 14-29. doi: 10.1093/ajcp/aqz142
[17] 陈佳园, 陈怡, 陈成帷, 等. 炎症性肠病患者C反应蛋白/白蛋白比值与疾病活动性的相关性研究[J]. 中国中西医结合消化杂志, 2022, 30(2): 102-107. doi: 10.3969/j.issn.1671-038X.2022.02.05 https://zxyxh.whuhzzs.com/article/doi/10.3969/j.issn.1671-038X.2022.02.05
[18] Holtman GA, Lisman-van Leeuwen Y, Reitsma JB, et al. Noninvasive Tests for Inflammatory Bowel Disease: A Meta-analysis[J]. Pediatrics, 2016, 137(1): 2015-2126.
[19] Takaki Y, Mizuochi T, Eda K, et al. Laboratory values in Japanese children with newly diagnosed inflammatory bowel disease[J]. Pediatr Int, 2019, 61(7): 720-725. doi: 10.1111/ped.13892
[20] Sherkatolabbasieh H, Firouzi M, Shafizadeh S. Evaluation of platelet count, erythrocyte sedimentation rate and C-reactive protein levels in paediatric patients with inflammatory and infectious disease[J]. New Microbes New Infect, 2020, 37: 100725. doi: 10.1016/j.nmni.2020.100725
[21] Imakiire S, Takedatsu H, Mitsuyama K, et al. Role of Serum Proteinase 3 Antineutrophil Cytoplasmic Antibodies in the Diagnosis, Evaluation of Disease Severity, and Clinical Course of Ulcerative Colitis[J]. Gut Liver, 2022, 16(1): 92-100. doi: 10.5009/gnl210211
[22] Savige JA, Chang L, Smith CL, et al. Anti-neutrophil cytoplasmic antibodies(ANCA)in myelodysplasia and other haematological disorders[J]. Aust N Z J Med, 1994, 24(3): 282-287. doi: 10.1111/j.1445-5994.1994.tb02173.x
[23] Xiao ZX, Miller JS, Zheng SG. An updated advance of autoantibodies in autoimmune diseases[J]. Autoimmun Rev, 2021, 20(2): 102743. doi: 10.1016/j.autrev.2020.102743
[24] Billing P, Tahir S, Calfin B, et al. Nuclear localization of the antigen detected by ulcerative colitis-associated perinuclear antineutrophil cytoplasmic antibodies[J]. Am J Pathol, 1995, 147(4): 979-987.
[25] Rodrigues M, Bueno C, Lomazi EA, et al. Classical serological markers in pediatric inflammatory bowel disease in brazil[J]. Arq Gastroenterol, 2021, 58(4): 495-503. doi: 10.1590/s0004-2803.202100000-89
[26] Yoon JY, Park SJ, Hong SP, et al. Correlations of C-reactive protein levels and erythrocyte sedimentation rates with endoscopic activity indices in patients with ulcerative colitis[J]. Dig Dis Sci, 2014, 59(4): 829-837. doi: 10.1007/s10620-013-2907-3
[27] Lamprecht P, Kerstein A, Klapa S, et al. Pathogenetic and Clinical Aspects of Anti-Neutrophil Cytoplasmic Autoantibody-Associated Vasculitides[J]. Front Immunol, 2018, 9: 680. doi: 10.3389/fimmu.2018.00680
[28] Xu Y, Xu F, Li W, et al. The diagnostic role and clinical association of serum proteinase 3 anti-neutrophil cytoplasmic antibodies in Chinese patients with inflammatory bowel disease[J]. Scand J Gastroenterol, 2020, 55(7): 806-813. doi: 10.1080/00365521.2020.1781926
[29] Pang Y, Ruan H, Wu D, et al. Assessment of clinical activity and severity using serum ANCA and ASCA antibodies in patients with ulcerative colitis[J]. Allergy Asthma Clin Immunol, 2020, 16: 37. doi: 10.1186/s13223-020-00433-1
[30] Aleksandrova EN, Novikov AA, Lukina GV, et al. Clinical value of antibodies in inflammatory bowel diseases[J]. Ter Arkh, 2021, 93(2): 228-235.
[31] Reumaux D, Sendid B, Poulain D, et al. Serological markers in inflammatory bowel diseases[J]. Best Pract Res Clin Gastroenterol, 2003, 17(1): 19-35. doi: 10.1053/bega.2002.0347
[32] Forcione DG, Rosen MJ, Kisiel JB, et al. Anti-Saccharomyces cerevisiae antibody(ASCA)positivity is associated with increased risk for early surgery in Crohn's disease[J]. Gut, 2004, 53(8): 1117-1122. doi: 10.1136/gut.2003.030734
[33] Halme L, Turunen U, Helio T, et al. Familial and sporadic inflammatory bowel disease: comparison of clinical features and serological markers in a genetically homogeneous population[J]. Scand J Gastroenterol, 2002, 37(6): 692-698. doi: 10.1080/00365520212511
[34] Vasiliauskas EA, Kam LY, Karp LC, et al. Marker antibody expression stratifies Crohn's disease into immunologically homogeneous subgroups with distinct clinical characteristics[J]. Gut, 2000, 47(4): 487-496. doi: 10.1136/gut.47.4.487
[35] Quinton JF, Sendid B, Reumaux D, et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role[J]. Gut, 1998, 42(6): 788-791. doi: 10.1136/gut.42.6.788
[36] Sakurai T, Saruta M. Positioning and Usefulness of Biomarkers in Inflammatory Bowel Disease[J]. Digestion, 2023, 104(1): 30-41. doi: 10.1159/000527846
[37] Kuna AT. Serological markers of inflammatory bowel disease[J]. Biochem Med (Zagreb), 2013, 23(1): 28-42.
[38] Ahmed Z, Lysek M, Zhang N, et al. Association Between Serological Markers and Crohn's Disease Activity[J]. J Clin Med Res, 2020, 12(1): 6-12. doi: 10.14740/jocmr4016
[39] Prideaux L, De Cruz P, Ng SC, et al. Serological antibodies in inflammatory bowel disease: a systematic review[J]. Inflamm Bowel Dis, 2012, 18(7): 1340-1355. doi: 10.1002/ibd.21903
[40] Hamilton AL, Kamm MA, De Cruz P, et al. Serologic antibodies in relation to outcome in postoperative Crohn's disease[J]. J Gastroenterol Hepatol, 2017, 32(6): 1195-1203. doi: 10.1111/jgh.13677
[41] Jiang M, Zeng Z, Chen K, et al. Enterogenous Microbiotic Markers in the Differential Diagnosis of Crohn's Disease and Intestinal Tuberculosis[J]. Front Immunol, 2022, 13: 820891. doi: 10.3389/fimmu.2022.820891
[42] Scales BS, Dickson RP, Lipuma JJ, et al. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans[J]. Clin Microbiol Rev, 2014, 27(4): 927-948. doi: 10.1128/CMR.00044-14
[43] Kristensen VA, Cvancarova M, Hoivik ML, et al. Serological antibodies and surgery in a population-based inception cohort of Crohn's disease patients-the IBSEN study[J]. Scand J Gastroenterol, 2020, 55(4): 436-441. doi: 10.1080/00365521.2020.1745879
[44] Schoepfer AM, Schaffer T, Mueller S, et al. Phenotypic associations of Crohn's disease with antibodies to flagellins A4-Fla2 and Fla-X, ASCA, p-ANCA, PAB, and NOD2 mutations in a Swiss Cohort[J]. Inflamm Bowel Dis, 2009, 15(9): 1358-1367. doi: 10.1002/ibd.20892
[45] Plevy S, Silverberg MS, Lockton S, et al. Combined serological, genetic, and inflammatory markers differentiate non-IBD, Crohn's disease, and ulcerative colitis patients[J]. Inflamm Bowel Dis, 2013, 19(6): 1139-1148. doi: 10.1097/MIB.0b013e318280b19e
[46] Iskandar HN, Ciorba MA. Biomarkers in inflammatory bowel disease: current practices and recent advances[J]. Transl Res, 2012, 159(4): 313-325. doi: 10.1016/j.trsl.2012.01.001
[47] Calcerrada P, Peluffo G, Radi R. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications[J]. Curr Pharm Des, 2011, 17(35): 3905-3932. doi: 10.2174/138161211798357719
[48] Korhonen R, Lahti A, Kankaanranta H, et al. Nitric oxide production and signaling in inflammation[J]. Curr Drug Targets Inflamm Allergy, 2005, 4(4): 471-479. doi: 10.2174/1568010054526359
[49] Rana T. Influence and Implications of the Molecular Paradigm of Nitric Oxide Underlying Inflammatory Reactions of the Gastrointestinal Tract of Dog: A Major Hallmark of Inflammatory Bowel Disease[J]. Inflamm Bowel Dis, 2022, 28(8): 1280-1288. doi: 10.1093/ibd/izac017
[50] Rana T. Unravelling of nitric oxide signalling: A potential biomarker with multifaceted complex mechanism associated with canine inflammatory bowel disease(IBD)[J]. Anaerobe, 2020, 66: 102288. doi: 10.1016/j.anaerobe.2020.102288
[51] Avdagic N, Zaciragic A, Babic N, et al. Nitric oxide as a potential biomarker in inflammatory bowel disease[J]. Bosn J Basic Med Sci, 2013, 13(1): 5-9. doi: 10.17305/bjbms.2013.2402
[52] Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling[J]. Cell Death Differ, 2003, 10(1): 45-65. doi: 10.1038/sj.cdd.4401189
[53] Horiuchi T, Mitoma H, Harashima S, et al. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents[J]. Rheumatology (Oxford), 2010, 49(7): 1215-1228. doi: 10.1093/rheumatology/keq031
[54] Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s)[J]. Microsc Res Tech, 2000, 50(3): 184-195. doi: 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H
[55] Cui G, Fan Q, Li Z, et al. Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: Current and novel biomarkers[J]. EBioMedicine, 2021, 66: 103329. doi: 10.1016/j.ebiom.2021.103329
[56] Avdagić N, Babić N, Seremet M, et al. Tumor necrosis factor-alpha serum level in assessment of disease activity in inflammatory bowel diseases[J]. Med Glas (Zenica), 2013, 10(2): 211-216.
[57] Komatsu M, Kobayashi D, Saito K, et al. Tumor necrosis factor-alpha in serum of patients with inflammatory bowel disease as measured by a highly sensitive immuno-PCR[J]. Clin Chem, 2001, 47(7): 1297-1301. doi: 10.1093/clinchem/47.7.1297
[58] 胡兴萍, 廖述利, 詹雅珍. 炎症性肠病患者应用英夫利西单抗干预对肠道菌群平衡及炎症因子水平的影响[J]. 中国中西医结合消化杂志, 2022, 30(5): 313-316. doi: 10.3969/j.issn.1671-038X.2022.05.02 https://zxyxh.whuhzzs.com/article/doi/10.3969/j.issn.1671-038X.2022.05.02
[59] Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. Ⅳ. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones[J]. J Exp Med, 1989, 170(6): 2081-2095. doi: 10.1084/jem.170.6.2081
[60] Walter MR. The molecular basis of IL-10 function: from receptor structure to the onset of signaling[J]. Curr Top Microbiol Immunol, 2014, 380: 191-212.
[61] Saha P, Golonka RM, Abokor AA, et al. IL-10 Receptor Neutralization-Induced Colitis in Mice: A Comprehensive Guide[J]. Curr Protoc, 2021, 1(8): e227. doi: 10.1002/cpz1.227
[62] Rasquinha MT, Sur M, Lasrado N, et al. IL-10 as a Th2 Cytokine: Differences Between Mice and Humans[J]. J Immunol, 2021, 207(9): 2205-2215. doi: 10.4049/jimmunol.2100565
[63] Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10[J]. J Exp Med, 2020, 217(1): e20190418. doi: 10.1084/jem.20190418
[64] Godala M, Gaszyńska E, Walczak K, et al. Role of Serum Interleukin-6, Interleukin-1β and Interleukin-10 in Assessment of Disease Activity and Nutritional Status in Patients with Inflammatory Bowel Disease[J]. J Clin Med, 2023, 12(18): 5956. doi: 10.3390/jcm12185956
[65] Melgar S, Yeung MM, Bas A, et al. Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis[J]. Clin Exp Immunol, 2003, 134(1): 127-137. doi: 10.1046/j.1365-2249.2003.02268.x
[66] Dudek M, Kałużna-Oleksy M, Migaj J, et al. Clinical value of soluble ST2 in cardiology[J]. Adv Clin Exp Med, 2020, 29(10): 1205-1210. doi: 10.17219/acem/126049
[67] Villacorta H, Maisel AS. Soluble ST2 Testing: A Promising Biomarker in the Management of Heart Failure[J]. Arq Bras Cardiol, 2016, 106(2): 145-152.
[68] Aggeletopoulou I, Tsounis EP, Triantos C. Molecular Mechanisms Underlying IL-33-Mediated Inflammation in Inflammatory Bowel Disease[J]. Int J Mol Sci, 2022, 24(1): 623. doi: 10.3390/ijms24010623
[69] Boga S, Alkim H, Koksal AR, et al. Serum ST2 in inflammatory bowel disease: a potential biomarker for disease activity[J]. J Investig Med, 2016, 64(5): 1016-1024. doi: 10.1136/jim-2016-000062
[70] Díaz-Jiménez D, De la Fuente M, Dubois-Camacho K, et al. Soluble ST2 is a sensitive clinical marker of ulcerative colitis evolution[J]. BMC Gastroenterol, 2016, 16(1): 103.
[71] Naka T, Fujimoto M. LRG is a novel inflammatory marker clinically useful for the evaluation of disease activity in rheumatoid arthritis and inflammatory bowel disease[J]. Immunol Med, 2018, 41(2): 62-67. doi: 10.1080/13497413.2018.1481582
[72] Kawamura T, Yamamura T, Nakamura M, et al. Accuracy of Serum Leucine-Rich Alpha-2 Glycoprotein in Evaluating Endoscopic Disease Activity in Crohn's Disease[J]. Inflamm Bowel Dis, 2023, 29(2): 245-253.
[73] Shinzaki S, Matsuoka K, Tanaka H, et al. Leucine-rich alpha-2 glycoprotein is a potential biomarker to monitor disease activity in inflammatory bowel disease receiving adalimumab: PLANET study[J]. J Gastroenterol, 2021, 56(6): 560-569.
[74] Shimoyama T, Yamamoto T, Yoshiyama S, et al. Leucine-Rich Alpha-2 Glycoprotein Is a Reliable Serum Biomarker for Evaluating Clinical and Endoscopic Disease Activity in Inflammatory Bowel Disease[J]. Inflamm Bowel Dis, 2023, 29(9): 1399-1408.
[75] Yasutomi E, Inokuchi T, Hiraoka S, et al. Leucine-rich alpha-2 glycoprotein as a marker of mucosal healing in inflammatory bowel disease[J]. Sci Rep, 2021, 11(1): 11086.
[76] Asonuma K, Kobayashi T, Kikkawa N, et al. Optimal Use of Serum Leucine-Rich Alpha-2 Glycoprotein as a Biomarker for Small Bowel Lesions of Crohn's Disease[J]. Inflamm Intest Dis, 2023, 8(1): 13-22.
[77] Day AJ, Milner CM. TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties[J]. Matrix Biol, 2019, 78-79: 60-83.
[78] Bardos T, Kamath RV, Mikecz K, et al. Anti-inflammatory and chondroprotective effect of TSG-6(tumor necrosis factor-alpha-stimulated gene-6) in murine models of experimental arthritis[J]. Am J Pathol, 2001, 159(5): 1711-1721.
[79] Yu Q, Zhang S, Wang H, et al. TNFAIP6 is a potential biomarker of disease activity in inflammatory bowel disease[J]. Biomark Med, 2016, 10(5): 473-483.
-
计量
- 文章访问数: 1293
- PDF下载数: 1811
- 施引文献: 0