肝源性外泌体在非酒精性脂肪性肝病肝损伤发生发展中的作用

张卿, 刘素彤, 赵文霞. 肝源性外泌体在非酒精性脂肪性肝病肝损伤发生发展中的作用[J]. 中国中西医结合消化杂志, 2023, 31(8): 649-653. doi: 10.3969/j.issn.1671-038X.2023.08.15
引用本文: 张卿, 刘素彤, 赵文霞. 肝源性外泌体在非酒精性脂肪性肝病肝损伤发生发展中的作用[J]. 中国中西医结合消化杂志, 2023, 31(8): 649-653. doi: 10.3969/j.issn.1671-038X.2023.08.15
ZHANG Qing, LIU Sutong, ZHAO Wenxia. The role of hepatocellular derived exosomes in development of liver injuries in nonalcoholic fatty liver disease[J]. Chin J Integr Tradit West Med Dig, 2023, 31(8): 649-653. doi: 10.3969/j.issn.1671-038X.2023.08.15
Citation: ZHANG Qing, LIU Sutong, ZHAO Wenxia. The role of hepatocellular derived exosomes in development of liver injuries in nonalcoholic fatty liver disease[J]. Chin J Integr Tradit West Med Dig, 2023, 31(8): 649-653. doi: 10.3969/j.issn.1671-038X.2023.08.15

肝源性外泌体在非酒精性脂肪性肝病肝损伤发生发展中的作用

  • 基金项目:
    国家自然科学基金(No:82205086);河南省特色骨干学科中医学学科建设项目(No:STG-ZYX02-202117)
详细信息

The role of hepatocellular derived exosomes in development of liver injuries in nonalcoholic fatty liver disease

More Information
  • 外泌体是由多种类型的细胞分泌的一类膜状囊泡,在正常和病理状态下进行着细胞间通信的功能。越来越多的报道显示外泌体,尤其是肝细胞来源的外泌体在非酒精性脂肪性肝病(NAFLD)/非酒精性脂肪性肝炎(NASH)的发生中发挥重要作用。本文从肝细胞脂肪变性、凋亡和炎症、纤维化等肝损伤来阐释肝源性外泌体的影响机制,以期为NAFLD/NASH机制研究提供参考。
  • 加载中
  • [1]

    Cannito S, Morello E, Bocca C, et al. Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis[J]. PLoS One, 2017, 12(3): e0172575. doi: 10.1371/journal.pone.0172575

    [2]

    Zhou F, Zhou J, Wang W, et al. Unexpected Rapid Increase in the Burden of NAFLD in China From 2008 to 2018: A Systematic Review and Meta-Analysis[J]. Hepatology, 2019, 70(4): 1119-1133. doi: 10.1002/hep.30702

    [3]

    Lee HW, Wong VW. Changing NAFLD Epidemiology in China[J]. Hepatology, 2019, 70(4): 1095-1098. doi: 10.1002/hep.30848

    [4]

    Mahmoudi A, Butler AE, Jamialahmadi T, et al. The role of exosomal miRNA in nonalcoholic fatty liver disease[J]. J Cell Physiol, 2022, 237(4): 2078-2094. doi: 10.1002/jcp.30699

    [5]

    van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. doi: 10.1038/nrm.2017.125

    [6]

    Cai S, Cheng X, Pan X, et al. Emerging role of exosomes in liver physiology and pathology[J]. Hepatol Res, 2017, 47(2): 194-203. doi: 10.1111/hepr.12794

    [7]

    Wang W, Zhu N, Yan T, et al. The crosstalk: exosomes and lipid metabolism[J]. Cell Commun Signal, 2020, 18(1): 119. doi: 10.1186/s12964-020-00581-2

    [8]

    Ma S, Shao S, Yang C, et al. A preliminary study: proteomic analysis of exosomes derived from thyroid-stimulating hormone-stimulated HepG2 cells[J]. J Endocrinol Invest, 2020, 43(9): 1229-1238. doi: 10.1007/s40618-020-01210-y

    [9]

    Hirsova P, Ibrahim SH, Krishnan A, et al. Lipid-Induced Signaling Causes Release of Inflammatory Extracellular Vesicles From Hepatocytes[J]. Gastroenterology, 2016, 150(4): 956-967. doi: 10.1053/j.gastro.2015.12.037

    [10]

    Shen M, Shen Y, Fan X, et al. Roles of Macrophages and Exosomes in Liver Diseases[J]. Front Med(Lausanne), 2020, 7: 583691.

    [11]

    Wang W, Li F, Lai X, et al. Exosomes secreted by palmitic acid-treated hepatocytes promote LX-2 cell activation by transferring miRNA-107[J]. Cell Death Discov, 2021, 7(1): 174. doi: 10.1038/s41420-021-00536-7

    [12]

    Zhang J, Tan J, Wang M, et al. Lipid-induced DRAM recruits STOM to lysosomes and induces LMP to promote exosome release from hepatocytes in NAFLD[J]. Sci Adv, 2021, 7(45): eabh1541. doi: 10.1126/sciadv.abh1541

    [13]

    Zhao Z, Zhong L, Li P, et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p[J]. Exp Cell Res, 2020, 387(1): 111738. doi: 10.1016/j.yexcr.2019.111738

    [14]

    Kakazu E, Mauer AS, Yin M, et al. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner[J]. J Lipid Res, 2016, 57(2): 233-245. doi: 10.1194/jlr.M063412

    [15]

    Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75(18): 3313-3327. doi: 10.1007/s00018-018-2860-6

    [16]

    Geng Y, Faber KN, de Meijer VE, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?[J]. Hepatol Int, 2021, 15(1): 21-35. doi: 10.1007/s12072-020-10121-2

    [17]

    Yang L, Roh YS, Song J, et al. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice[J]. Hepatology, 2014, 59(2): 483-495. doi: 10.1002/hep.26698

    [18]

    Zhao J, Hu L, Gui W, et al. Hepatocyte TGF-β Signaling Inhibiting WAT Browning to Promote NAFLD and Obesity Is Associated With Let-7b-5p[J]. Hepatol Commun, 2022, 6(6): 1301-1321. doi: 10.1002/hep4.1892

    [19]

    Xu Y, Zhu Y, Hu S, et al. Hepatocyte miR-34a is a key regulator in the development and progression of non-alcoholic fatty liver disease[J]. Mol Metab, 2021, 51: 101244. doi: 10.1016/j.molmet.2021.101244

    [20]

    Liu XL, Pan Q, Cao HX, et al. Lipotoxic hepatocyte-derived exosomal miR-192-5p activates macrophages via Rictor/Akt/FoxO1 signaling in NAFLD[J]. Hepatology, 2020, 72(2): 454-469. doi: 10.1002/hep.31050

    [21]

    Liu XL, Cao HX, Wang BC, et al. miR-192-5p regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1[J]. World J Gastroenterol, 2017, 23(46): 8140-8151. doi: 10.3748/wjg.v23.i46.8140

    [22]

    Lin Y, Ding D, Huang Q, et al. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(9): 869-882.

    [23]

    Gil-Zamorano J, Martin R, Daimiel L, et al. Docosahexaenoic acid modulates the enterocyte Caco-2 cell expression of microRNAs involved in lipid metabolism[J]. J Nutr, 2014, 144(5): 575-585. doi: 10.3945/jn.113.189050

    [24]

    Lee YS, Kim SY, Ko E, et al. Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells[J]. Sci Rep, 2017, 7(1): 3710. doi: 10.1038/s41598-017-03389-2

    [25]

    Manne V, Handa P, Kowdley KV. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis[J]. Clin Liver Dis, 2018, 22(1): 23-37. doi: 10.1016/j.cld.2017.08.007

    [26]

    Kakisaka K, Cazanave SC, Fingas CD, et al. Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(1): G77-G84. doi: 10.1152/ajpgi.00301.2011

    [27]

    Guo Q, Furuta K, Lucien F, et al. Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH[J]. J Hepatol, 2019, 71(6): 1193-1205. doi: 10.1016/j.jhep.2019.07.019

    [28]

    张杰. DRAM在NAFLD发生发展过程中促进肝细胞外泌体分泌的作用及机制研究[D]. 青岛: 青岛大学, 2021.

    [29]

    Kumar S, Duan Q, Wu R, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 176: 113869. doi: 10.1016/j.addr.2021.113869

    [30]

    McCommis KS, Hodges WT, Brunt EM, et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis[J]. Hepatology, 2017, 65(5): 1543-1556. doi: 10.1002/hep.29025

    [31]

    Povero D, Panera N, Eguchi A, et al. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(6): 646-663.e4. doi: 10.1016/j.jcmgh.2015.07.007

    [32]

    Povero D, Eguchi A, Niesman IR, et al. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells[J]. Sci Signal, 2013, 6(296): ra88.

    [33]

    Murakami Y, Toyoda H, Tanahashi T, et al. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease[J]. PLoS One, 2012, 7(10): e48366. doi: 10.1371/journal.pone.0048366

    [34]

    Garcia-Martinez I, Alen R, Rada P, et al. Insights Into Extracellular Vesicles as Biomarker of NAFLD Pathogenesis[J]. Front Med(Lausanne), 2020, 7: 395.

    [35]

    Overi D, Carpino G, Franchitto A, et al. Hepatocyte Injury and Hepatic Stem Cell Niche in the Progression of Non-Alcoholic Steatohepatitis[J]. Cells, 2020, 9(3): 590. doi: 10.3390/cells9030590

    [36]

    Newman LA, Sorich MJ, Rowland A. Role of Extracellular Vesicles in the Pathophysiology, Diagnosis and Tracking of Non-Alcoholic Fatty Liver Disease[J]. J Clin Med, 2020, 9(7): 2032. doi: 10.3390/jcm9072032

    [37]

    Nakao Y, Amrollahi P, Parthasarathy G, et al. Circulating extracellular vesicles are a biomarker for NAFLD resolution and response to weight loss surgery[J]. Nanomedicine, 2021, 36: 102430. doi: 10.1016/j.nano.2021.102430

    [38]

    Rega-Kaun G, Ritzel D, Kaun C, et al. Changes of Circulating Extracellular Vesicles from the Liver after Roux-en-Y Bariatric Surgery[J]. Int J Mol Sci, 2019, 20(9): 2153. doi: 10.3390/ijms20092153

    [39]

    Povero D, Eguchi A, Li H, et al. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease[J]. PLoS One, 2014, 9(12): e113651. doi: 10.1371/journal.pone.0113651

    [40]

    Maji S, Matsuda A, Yan IK, et al. Extracellular vesicles in liver diseases[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(3): G194-G200. doi: 10.1152/ajpgi.00216.2016

    [41]

    Pirola CJ, Fernández Gianotti T, Castaño GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis[J]. Gut, 2015, 64(5): 800-812. doi: 10.1136/gutjnl-2014-306996

    [42]

    Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy[J]. J Control Release, 2015, 207: 18-30. doi: 10.1016/j.jconrel.2015.03.033

  • 加载中
计量
  • 文章访问数:  728
  • PDF下载数:  309
  • 施引文献:  0
出版历程
收稿日期:  2022-12-19
刊出日期:  2023-08-15

目录