-
摘要: 炎症性肠病(inflammatory bowel disease,IBD)包括溃疡性结肠炎(ulcerative colitis,UC)的发病率在我国呈逐渐升高的趋势。随着诊治水平的进展,长病程的UC患者逐渐增多,发生结直肠癌(colorectal cancer,CRC)的风险明显增加。UC癌变的危险因素主要包括长病程、广泛肠段受累、累积炎症负担(cumulative inflammatory burden,CIB)、合并原发性硬化性胆管炎(primary sclerosing cholangitis,PSC)、CRC家族史等,其中炎症的反复发作是癌变的独立危险因素。结肠炎相关结直肠癌(colitis-associated colorectal cancer, CAC)与散发性CRC在癌变模式、发生机制、分子特征等方面均存在差异。本文将结合近年来的研究进展,详细阐述遗传和表观遗传的改变、氧化应激、异常免疫反应以及肠道菌群失调在炎癌转化中发挥的作用。基于危险因素对UC患者进行CAC风险分层,高危患者应进行更频繁的结肠镜监测以便早发现、早干预、早治疗。Abstract: The incidence of inflammatory bowel disease(IBD), including ulcerative colitis(UC), is gradually rising in China. With the progress of diagnosis and treatment, the number of UC patients with a long-term course of the disease is increasing, and their risk of developing colorectal cancer(CRC) is significantly increased. Risk factors for UC carcinogenesis include long-term course of the disease, extensive intestinal involvement, cumulative inflammatory burden(CIB), primary sclerosing cholangitis(PSC), and family history of CRC, among which recurrent inflammation is an independent risk factor for cancerogenesis. Colitis-associated colorectal cancer(CAC) and sporadic colorectal cancer are different in terms of carcinogenesis pattern, pathogenesis, and molecular characteristics. In this article, we will discuss the role of genetic and epigenetic changes, oxidative stress, abnormal immune response and intestinal flora disorder in the transformation from colitis to carcinoma. The risk stratification of CAC was performed for UC patients based on these risk factors. High-risk patients should undergo more frequent surveillance through colonoscopy for early detection, intervention, and treatment.
-
-
表 1 CAC和sCRC的异同
项目 CAC sCRC 危险因素 广泛肠段受累、长病程、组织学炎症、CIB、合并PSC、CRC家族史等 年龄、环境因素(如吸烟、饮酒)、遗传因素等 起源 异型增生,形态更平坦,弥漫性,局灶或多灶 腺瘤(和无蒂锯齿状息肉),病灶离散 癌变模式 慢性炎症-不确定性异型增生-低级别异型增生-高级别异型增生-癌,“大爆炸”模型 早期腺瘤-中期腺瘤-晚期腺瘤-癌,“随机”模型 发生机制 遗传和表观遗传改变,氧化应激,异常免疫反应,肠道菌群失调 CIN、MSI、CIMP 基因突变 早期p53突变,且频率较高;晚期APC突变,且频率较低 早期APC突变,晚期p53突变 共识分子亚型 典型上皮型(CMS2)为主 间叶型(CMS4)为主 分子特征 表现出上皮分化特征和显著的Wnt和MYC信号激活 常有上皮-间充质转化(epithelial-mesenchymal transformation,EMT)相关基因的上调,TGF-β激活,间质浸润和血管生成 预后 较好 较差 -
[1] Cui G, Yuan A. A Systematic Review of Epidemiology and Risk Factors Associated With Chinese Inflammatory Bowel Disease[J]. Front Med(Lausanne), 2018, 5: 183.
[2] Wang Z, Zhang H, Yang H, et al. The Incidence Rate and Risk Factors of Malignancy in Elderly-Onset Inflammatory Bowel Disease: A Chinese Cohort Study From 1998 to 2020[J]. Front Oncol, 2021, 11: 788980. doi: 10.3389/fonc.2021.788980
[3] Dyson JK, Rutter MD. Colorectal cancer in inflammatory bowel disease: what is the real magnitude of the risk?[J]. World J Gastroenterol, 2012, 18(29): 3839-3848. doi: 10.3748/wjg.v18.i29.3839
[4] Lu C, Schardey J, Zhang T, et al. Survival Outcomes and Clinicopathological Features in Inflammatory Bowel Disease-associated Colorectal Cancer: A Systematic Review and Meta-analysis[J]. Ann Surg, 2022, 276(5): e319-e330. doi: 10.1097/SLA.0000000000005339
[5] Lopez A, Pouillon L, Beaugerie L, et al. Colorectal cancer prevention in patients with ulcerative colitis[J]. Best Pract Res Clin Gastroenterol, 2018, 32-33: 103-109. doi: 10.1016/j.bpg.2018.05.010
[6] Wang YN, Li J, Zheng WY, et al. Clinical characteristics of ulcerative colitis-related colorectal cancer in Chinese patients[J]. J Dig Dis, 2017, 18(12): 684-690. doi: 10.1111/1751-2980.12558
[7] Wijnands AM, de Jong ME, Lutgens M, et al. Prognostic Factors for Advanced Colorectal Neoplasia in Inflammatory Bowel Disease: Systematic Review and Meta-analysis[J]. Gastroenterology, 2021, 160(5): 1584-1598. doi: 10.1053/j.gastro.2020.12.036
[8] 张琴, 万健, 吴开春. 溃疡性结肠炎癌变流行病学调查: 一项全国多中心回顾性研究[J]. 中华炎性肠病杂志, 2017, 1(3): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXPW202111001.htm
[9] Bopanna S, Ananthakrishnan AN, Kedia S, et al. Risk of colorectal cancer in Asian patients with ulcerative colitis: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2017, 2(4): 269-276. doi: 10.1016/S2468-1253(17)30004-3
[10] Choi CR, Al Bakir I, Ding NJ, et al. Cumulative burden of inflammation predicts colorectal neoplasia risk in ulcerative colitis: a large single-centre study[J]. Gut, 2019, 68(3): 414-422. doi: 10.1136/gutjnl-2017-314190
[11] Shah SC, Itzkowitz SH. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management[J]. Gastroenterology, 2022, 162(3): 715-730. e3. doi: 10.1053/j.gastro.2021.10.035
[12] Ji SG, Juran BD, Mucha S, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease[J]. Nat Genet, 2017, 49(2): 269-273. doi: 10.1038/ng.3745
[13] Li J, Zhou WX, Liu S, et al. Similarities and differences in clinical and pathologic features of inflammatory bowel disease-associated colorectal cancer in China and Canada[J]. Chin Med J(Engl), 2019, 132(22): 2664-2669.
[14] 李景南, 郑威扬, 钱家鸣, 等. 溃疡性结肠炎相关结直肠癌临床特点及癌变相关蛋白的表达[J]. 中华消化杂志, 2010, 30(11): 808-810.
[15] Ullman TA, Itzkowitz SH. Intestinal Inflammation and Cancer[J]. Gastroenterology, 2011, 140(6): 1807-1816. e1. doi: 10.1053/j.gastro.2011.01.057
[16] Hussain SP, Amstad P, Raja K, et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease[J]. Cancer Res, 2000, 60(13): 3333-3337.
[17] Yan P, Wang Y, Meng X, et al. Whole Exome Sequencing of Ulcerative Colitis-associated Colorectal Cancer Based on Novel Somatic Mutations Identified in Chinese Patients[J]. Inflamm Bowel Dis, 2019, 25(8): 1293-1301. doi: 10.1093/ibd/izz020
[18] Baker AM, Cross W, Curtius K, et al. Evolutionary history of human colitis-associated colorectal cancer[J]. Gut, 2019, 68(6): 985-995. doi: 10.1136/gutjnl-2018-316191
[19] Sottoriva A, Kang H, Ma Z, et al. A Big Bang model of human colorectal tumor growth[J]. Nat Genet, 2015, 47(3): 209-216. doi: 10.1038/ng.3214
[20] Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11): 1350-1356. doi: 10.1038/nm.3967
[21] Rajamaki K, Taira A, Katainen R, et al. Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer[J]. Gastroenterology, 2021, 161(2): 592-607. doi: 10.1053/j.gastro.2021.04.042
[22] Arhi C, Askari A, Nachiappan S, et al. Stage at Diagnosis and Survival of Colorectal Cancer With or Without Underlying Inflammatory Bowel Disease: A Population-based Study[J]. J Crohns Colitis, 2021, 15(3): 375-382. doi: 10.1093/ecco-jcc/jjaa196
[23] Neganova M, Liu J, Aleksandrova Y, et al. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment[J]. Cancers(Basel), 2021, 13(23): 6062.
[24] Lei L, Yang J, Zhang J, et al. The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis[J]. Redox Biol, 2021, 42: 101880. doi: 10.1016/j.redox.2021.101880
[25] Li H, Zhao L, Lau YS, et al. Genome-wide CRISPR screen identifies LGALS2 as an oxidative stress-responsive gene with an inhibitory function on colon tumor growth[J]. Oncogene, 2021, 40(1): 177-188. doi: 10.1038/s41388-020-01523-5
[26] Qin Z, Yuan X, Liu J, et al. Albuca Bracteata Polysaccharides Attenuate AOM/DSS Induced Colon Tumorigenesis via Regulating Oxidative Stress, Inflammation and Gut Microbiota in Mice[J]. Front Pharmacol, 2022, 13: 833077. doi: 10.3389/fphar.2022.833077
[27] Wang J, Ding K, Wang Y, et al. Wumei Pill Ameliorates AOM/DSS-Induced Colitis-Associated Colon Cancer through Inhibition of Inflammation and Oxidative Stress by Regulating S-Adenosylhomocysteine Hydrolase-(AHCY-)Mediated Hedgehog Signaling in Mice[J]. Oxid Med Cell Longev, 2022, 2022: 4061713.
[28] Krug J, Rodrian G, Petter K, et al. N-glycosylation Regulates Intrinsic IFN-γ Resistance in Colorectal Cancer: Implications for Immunotherapy[J]. Gastroenterology, 2023, 164(3): 392-406. e5. doi: 10.1053/j.gastro.2022.11.018
[29] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. doi: 10.1016/j.cell.2011.02.013
[30] Shin AE, Tesfagiorgis Y, Larsen F, et al. F4/80+Ly6Chigh Macrophages Lead to Cell Plasticity and Cancer Initiation in Colitis[J]. Gastroenterology, 2023, S0016-5085(23)00011-2.
[31] Zhang C, Zhang J, Zhang Y, et al. Identifying neutrophil-associated subtypes in ulcerative colitis and confirming neutrophils promote colitis-associated colorectal cancer[J]. Front Immunol, 2023, 14: 1095098. doi: 10.3389/fimmu.2023.1095098
[32] 胡兴萍, 廖述利, 詹雅珍. 炎症性肠病患者应用英夫利西单抗干预对肠道菌群平衡及炎性因子水平的影响[J]. 中国中西医结合消化杂志, 2022, 30(5): 313-316. doi: 10.3969/j.issn.1671-038X.2022.05.02 https://zxyxh.whuhzzs.com/article/doi/10.3969/j.issn.1671-038X.2022.05.02
[33] 许建勇, 时艳, 陈眈. 硫唑嘌呤片结合微生态制剂对炎症性肠病患者的肠屏障功能、菌群及IL-17BR水平的影响[J]. 中国中西医结合消化杂志, 2021, 29(8): 569-574. doi: 10.3969/j.issn.1671-038X.2021.08.09
[34] Hanahan D. Hallmarks of Cancer: New Dimensions[J]. Cancer Discov, 2022, 12(1): 31-46. doi: 10.1158/2159-8290.CD-21-1059
[35] Arthur JC, Gharaibeh RZ, Mühlbauer M, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer[J]. Nat Commun, 2014, 5: 4724. doi: 10.1038/ncomms5724
[36] Boleij A, Hechenbleikner EM, Goodwin AC, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients[J]. Clin Infect Dis, 2015, 60(2): 208-215. doi: 10.1093/cid/ciu787
[37] Wang C, Li W, Wang H, et al. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota[J]. BMC Microbiol, 2019, 19(1): 246. doi: 10.1186/s12866-019-1610-8
[38] Wang CS, Li WB, Wang HY, et al. VSL#3 can prevent ulcerative colitis-associated carcinogenesis in mice[J]. World J Gastroenterol, 2018, 24(37): 4254-4262. doi: 10.3748/wjg.v24.i37.4254
[39] Mao J, Chen X, Wang C, et al. Effects and mechanism of the bile acid(farnesoid X)receptor on the Wnt/β-catenin signaling pathway in colon cancer[J]. Oncol Lett, 2020, 20(1): 337-345.
[40] Shao X, Sun S, Zhou Y, et al. Bacteroides fragilis restricts colitis-associated cancer via negative regulation of the NLRP3 axis[J]. Cancer Lett, 2021, 523: 170-181. doi: 10.1016/j.canlet.2021.10.002
[41] Wang T, Pan D, Zhou Z, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut[J]. PLoS Pathog, 2016, 12(6): e1005662. doi: 10.1371/journal.ppat.1005662
[42] Zhu Y, Shi T, Lu X, et al. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22[J]. EMBO J, 2021, 40(11): e105320.
[43] Burgueño JF, Fritsch J, Gonzalez EE, et al. Epithelial TLR4 Signaling Activates DUOX2 to Induce Microbiota-Driven Tumorigenesis[J]. Gastroenterology, 2021, 160(3): 797-808. e6. doi: 10.1053/j.gastro.2020.10.031
[44] Zhang X, Ma Y, Lv G, et al. Ferroptosis as a therapeutic target for inflammation-related intestinal diseases[J]. Front Pharmacol, 2023, 14: 1095366. doi: 10.3389/fphar.2023.1095366
[45] Tan G, Huang C, Chen J, et al. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway[J]. J Hematol Oncol, 2020, 13(1): 149. doi: 10.1186/s13045-020-00985-0
[46] Nguyen GC, Gulamhusein A, Bernstein CN. 5-aminosalicylic acid is not protective against colorectal cancer in inflammatory bowel disease: a meta-analysis of non-referral populations[J]. Am J Gastroenterol, 2012, 107(9): 1298-304;quiz 1297, 1305. doi: 10.1038/ajg.2012.198
[47] Rubin DT, Huo D, Kinnucan JA, et al. Inflammation is an independent risk factor for colonic neoplasia in patients with ulcerative colitis: a case-control study[J]. Clin Gastroenterol Hepatol, 2013, 11(12): 1601-1608. e1-4. doi: 10.1016/j.cgh.2013.06.023
[48] Jess T, Lopez A, Andersson M, et al. Thiopurines and risk of colorectal neoplasia in patients with inflammatory bowel disease: a meta-analysis[J]. Clin Gastroenterol Hepatol, 2014, 12(11): 1793-1800. e1. doi: 10.1016/j.cgh.2014.05.019
[49] Shah SC, Itzkowitz SH. Reappraising Risk Factors for Inflammatory Bowel Disease-associated Neoplasia: Implications for Colonoscopic Surveillance in IBD[J]. J Crohns Colitis, 2020, 14(8): 1172-1177. doi: 10.1093/ecco-jcc/jjaa040
[50] 中华医学会消化病学分会炎症性肠病学组. 炎症性肠病诊断与治疗的共识意见(2018年, 北京)[J]. 中华消化杂志, 2018, 38(5): 292-311. doi: 10.3760/cma.j.issn.0254-1432.2018.05.002
[51] 王亚楠, 李骥, 吴东, 等. 新型内镜在监测溃疡性结肠炎癌变中的应用进展[J]. 转化医学电子杂志, 2017, 4(12): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHDZ201712017.htm
[52] Murthy SK, Feuerstein JD, Nguyen GC, et al. AGA Clinical Practice Update on Endoscopic Surveillance and Management of Colorectal Dysplasia in Inflammatory Bowel Diseases: Expert Review[J]. Gastroenterology, 2021, 161(3): 1043-1051. e4. doi: 10.1053/j.gastro.2021.05.063
[53] 吴东, 周炜洵, 杨红, 等. 放大色素内镜联合窄带成像对炎症性肠病相关异型增生和结直肠癌的诊断价值[J]. 中华消化内镜杂志, 2017, 34(3): 163-168. doi: 10.3760/cma.j.issn.1007-5232.2017.03.004
[54] Laine L, Kaltenbach T, Barkun A, et al. SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease[J]. Gastroenterology, 2015, 148(3): 639-651. e28. doi: 10.1053/j.gastro.2015.01.031
[55] 吴东, 李景南, 钱家鸣. 炎症性肠病患者结直肠癌前病变的内镜诊治——美国炎症性肠病不典型增生监测与管理国际专家共识解读[J]. 中国实用内科杂志, 2016, 36(3): 195-198. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201603008.htm
[56] Magro F, Gionchetti P, Eliakim R, et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders[J]. J Crohns Colitis, 2017, 11(6): 649-670. doi: 10.1093/ecco-jcc/jjx008
-