基于NLRP3炎症小体探讨中医药防治结直肠癌的相关进展

刘吉祥, 王一冲, 孔佑甲, 等. 基于NLRP3炎症小体探讨中医药防治结直肠癌的相关进展[J]. 中国中西医结合消化杂志, 2022, 30(10): 747-752. doi: 10.3969/j.issn.1671-038X.2022.10.13
引用本文: 刘吉祥, 王一冲, 孔佑甲, 等. 基于NLRP3炎症小体探讨中医药防治结直肠癌的相关进展[J]. 中国中西医结合消化杂志, 2022, 30(10): 747-752. doi: 10.3969/j.issn.1671-038X.2022.10.13
LIU Jixiang, WANG Yichong, KONG Youjia, et al. Exploring the progress of Traditional Chinese Medicine against colorectal cancer based on NLRP3 inflammasome[J]. Chin J Integr Tradit West Med Dig, 2022, 30(10): 747-752. doi: 10.3969/j.issn.1671-038X.2022.10.13
Citation: LIU Jixiang, WANG Yichong, KONG Youjia, et al. Exploring the progress of Traditional Chinese Medicine against colorectal cancer based on NLRP3 inflammasome[J]. Chin J Integr Tradit West Med Dig, 2022, 30(10): 747-752. doi: 10.3969/j.issn.1671-038X.2022.10.13

基于NLRP3炎症小体探讨中医药防治结直肠癌的相关进展

  • 基金项目:
    十病十药研发(No:Z171100001717008)
详细信息
    通讯作者: 姚树坤,E-mail:yao_sk@163.com

    Δ审校者

  • 中图分类号: R73

Exploring the progress of Traditional Chinese Medicine against colorectal cancer based on NLRP3 inflammasome

More Information
  • 近年来结直肠癌的发病率和病死率逐步上升,其发病机制为肠道慢性炎症、免疫失调、菌群失衡等。NLRP3炎症小体是人体固有免疫系统的重要组成部分,能够被多种物质激活,诱发肠道慢性炎症及免疫失调、细胞焦亡等,目前已被证实与结直肠癌的发生、发展密切相关。该文根据国内外最新研究,聚焦NLRP3炎症小体与结直肠癌的关系,综述中医药通过NLRP3炎症小体通路治疗结直肠癌的研究进展。
  • 加载中
  • [1]

    Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J National Cancer Center, 2022, 2(1): 1-9. doi: 10.1016/j.jncc.2022.02.002

    [2]

    徐玉彬, 张培建, 王超臣. 结直肠癌的病因及发病机制的研究进展[J]. 中华临床医师杂志(电子版), 2015, 9(15): 2912-2915. doi: 10.3877/cma.j.issn.1674-0785.2015.15.029

    [3]

    Keshavarz S, Koushki K, Ayati SH, et al. Inflammasomes and Colorectal Cancer[J]. Cells, 2021, 10(9): 2172. doi: 10.3390/cells10092172

    [4]

    Ngui I, Perera AP, Eri R. Does NLRP3 Inflammasome and Aryl Hydrocarbon Receptor Play an Interlinked Role in Bowel Inflammation and Colitis-Associated Colorectal Cancer?[J]. Molecules, 2020, 25(10): 2427. doi: 10.3390/molecules25102427

    [5]

    Cambui R, do Espírito Santo GF, Fernandes FP, et al. Double-edged sword of inflammasome genetics in colorectal cancer prognosis[J]. Clin Immunol, 2020, 213: 108373. doi: 10.1016/j.clim.2020.108373

    [6]

    Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and potential targeting[J]. Nat Rev Cancer, 2019, 19(4): 197-214. doi: 10.1038/s41568-019-0123-y

    [7]

    Hou J, Zhao R, Xia W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis[J]. Nat Cell Biol, 2020, 22(10): 1264-1275. doi: 10.1038/s41556-020-0575-z

    [8]

    Bauer C, Duewell P, Lehr HA, et al. Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: influence of genetic and environmental factors[J]. Dig Dis, 2012, 30(Suppl 1): 82-90.

    [9]

    Huber S, Gagliani N, Zenewicz LA, et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine[J]. Nature, 2012, 491(7423): 259-263. doi: 10.1038/nature11535

    [10]

    Fruhbeck G, Mentxaka A, Ahechu P, et al. The Differential Expression of the Inflammasomes in Adipose Tissue and Colon Influences the Development of Colon Cancer in a Context of Obesity by Regulating Intestinal Inflammation[J]. J Inflamm Res, 2021, 14: 6431-6446. doi: 10.2147/JIR.S335882

    [11]

    Son HJ, Sohn SH, Kim N, et al. Effect of Estradiol in an Azoxymethane/Dextran Sulfate Sodium-Treated Mouse Model of Colorectal Cancer: Implication for Sex Difference in Colorectal Cancer Development[J]. Cancer Res Treat, 2019, 51(2): 632-648. doi: 10.4143/crt.2018.060

    [12]

    Liu L, Dong W, Wang S, et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis[J]. Food Funct, 2018, 9(11): 5588-5597. doi: 10.1039/C8FO01143E

    [13]

    Shao X, Lei Z, Zhou C. NLRP3 Promotes Colorectal Cancer Cell Proliferation and Metastasis via Regulating Epithelial Mesenchymal Transformation[J]. Anticancer Agents Med Chem, 2020, 20(7): 820-827. doi: 10.2174/1871520620666200220112741

    [14]

    Deng Q, Geng Y, Zhao L, et al. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver[J]. Cancer Lett, 2019, 442: 21-30. doi: 10.1016/j.canlet.2018.10.030

    [15]

    Wang B, Li H, Wang X, et al. The association of aberrant expression of NLRP3 and p-S6K1 in colorectal cancer[J]. Pathol Res Pract, 2020, 216(1): 152737. doi: 10.1016/j.prp.2019.152737

    [16]

    Shi F, Wei B, Lan T, et al. Low NLRP3 expression predicts a better prognosis of colorectal cancer[J]. Biosci Rep, 2021, 41(4): BSR20210280. doi: 10.1042/BSR20210280

    [17]

    Marandi Y, Hashemzade S, Tayebinia H, et al. NLRP3-inflammasome activation is associated with epithelial-mesenchymal transition and progression of colorectal cancer[J]. Iran J Basic Med Sci, 2021, 24(4): 483-492.

    [18]

    Ding Y, Yan Y, Dong Y, et al. NLRP3 promotes immune escape by regulating immune checkpoints: A pan-cancer analysis[J]. Int Immunopharmacol, 2022, 104: 108512. doi: 10.1016/j.intimp.2021.108512

    [19]

    Lu F, Zhao Y, Pang Y, et al. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma[J]. Cancer Lett, 2021, 497: 178-189. doi: 10.1016/j.canlet.2020.10.024

    [20]

    MakAnyengo R, Duewell P, Reichl C, et al. Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut[J]. JCI Insight, 2018, 3(5): e96322. doi: 10.1172/jci.insight.96322

    [21]

    Daley D, Mani VR, Mohan N, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma[J]. J Exp Med, 2017, 214(6): 1711-1724. doi: 10.1084/jem.20161707

    [22]

    吴长有. Th17细胞: 一种新的效应CD4+T细胞亚群[J]. 细胞与分子免疫学杂志, 2006(6): 695-697. doi: 10.3321/j.issn:1007-8738.2006.06.001

    [23]

    姚金晶, 陈宜涛. Th1/Th2平衡调节与疾病发生的研究进展[J]. 现代生物医学进展, 2009, 9(13): 2597-2600. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX200913062.htm

    [24]

    Mutala LB, Deleine C, Karakachoff M, et al. The Caspase-1/IL-18 Axis of the Inflammasome in Tumor Cells: A Modulator of the Th1/Tc1 Response of Tumor-Infiltrating T Lymphocytes in Colorectal Cancer[J]. Cancers(Basel), 2021, 13(2): 189.

    [25]

    Gong W, Liu P, Zhao F, et al. STING-mediated Syk Signaling Attenuates Tumorigenesis of Colitis-associated Colorectal Cancer Through Enhancing Intestinal Epithelium Pyroptosis[J]. Inflamm Bowel Dis, 2022, 28(4): 572-585. doi: 10.1093/ibd/izab217

    [26]

    Tang Z, Ji L, Han M, et al. Pyroptosis is involved in the inhibitory effect of FL118 on growth and metastasis in colorectal cancer[J]. Life Sci, 2020, 257: 118065. doi: 10.1016/j.lfs.2020.118065

    [27]

    Derangere V, Chevriaux A, Courtaut F, et al. Liver X receptor β activation induces pyroptosis of human and murine colon cancer cells[J]. Cell Death Differ, 2014, 21(12): 1914-1924. doi: 10.1038/cdd.2014.117

    [28]

    Ma Y, Chen Y, Lin C, et al. Biological functions and clinical significance of the newly identified long non-coding RNA RP1-85F18.6 in colorectal cancer[J]. Oncol Rep, 2018, 40(5): 2648-2658.

    [29]

    Wu LS, Liu Y, Wang XW, et al. LPS Enhances the Chemosensitivity of Oxaliplatin in HT29 Cells via GSDMD-Mediated Pyroptosis[J]. Cancer Manag Res, 2020, 12: 10397-10409. doi: 10.2147/CMAR.S244374

    [30]

    Dupaul-Chicoine J, Arabzadeh A, Dagenais M, et al. The Nlrp3 Inflammasome Suppresses Colorectal Cancer Metastatic Growth in the Liver by Promoting Natural Killer Cell Tumoricidal Activity[J]. Immunity, 2015, 43(4): 751-763. doi: 10.1016/j.immuni.2015.08.013

    [31]

    Hirota SA, Ng J, Lueng A, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis[J]. Inflamm Bowel Dis, 2011, 17(6): 1359-1372. doi: 10.1002/ibd.21478

    [32]

    Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012, 482(7384): 179-185. doi: 10.1038/nature10809

    [33]

    陈叶, 刘金涛, 朱源, 等. 大肠癌中医辨证及治疗概况[J]. 中国肿瘤, 2015, 24(4): 319-324. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHLU201504017.htm

    [34]

    杨宇飞. 中医药在结直肠癌治疗中的优势与展望[J]. 中国中西医结合杂志, 2020, 40(11): 1294-1297. doi: 10.7661/j.cjim.20201011.191

    [35]

    Qin Y, Yu Y, Yang C, et al. Atractylenolide I Inhibits NLRP3 Inflammasome Activation in Colitis-Associated Colorectal Cancer via Suppressing Drp1-Mediated Mitochondrial Fission[J]. Front Pharmacol, 2021, 12: 674340. doi: 10.3389/fphar.2021.674340

    [36]

    He Q, Li Z, Wang Y, et al. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction[J]. Int Immunopharmacol, 2017, 50: 208-215. doi: 10.1016/j.intimp.2017.06.029

    [37]

    Elshaer M, Chen Y, Wang XJ, et al. Resveratrol: An overview of its anti-cancer mechanisms[J]. Life Sci, 2018, 207: 340-349. doi: 10.1016/j.lfs.2018.06.028

    [38]

    Dai G, Jiang Z, Sun B, et al. Caffeic Acid Phenethyl Ester Prevents Colitis-Associated Cancer by Inhibiting NLRP3 Inflammasome[J]. Front Oncol, 2020, 10: 721. doi: 10.3389/fonc.2020.00721

    [39]

    Qiao S, Lv C, Tao Y, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer[J]. Cancer Lett, 2020, 491: 162-179. doi: 10.1016/j.canlet.2020.08.033

    [40]

    Xie S, Yang T, Wang Z, et al. Astragaloside attenuates sepsis-induced intestinal barrier dysfunction via suppressing RhoA/NLRP3 inflammasome signaling[J]. Int Immunopharmacol, 2020, 78: 106066. doi: 10.1016/j.intimp.2019.106066

    [41]

    Guo W, Sun Y, Liu W, et al. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer[J]. Autophagy, 2014, 10(6): 972-985. doi: 10.4161/auto.28374

    [42]

    Xu L, Cai P, Li X, et al. Inhibition of NLRP3 inflammasome activation in myeloid-derived suppressor cells by and rographolide sulfonate contributes to 5-FU sensitization in mice[J]. Toxicol Appl Pharmacol, 2021, 428: 115672. doi: 10.1016/j.taap.2021.115672

    [43]

    毕娉娉. 基于NLRP3炎症小体探讨连翘防治化疗性恶心呕吐作用机制[D]. 广州: 广东药科大学, 2021.

    [44]

    张文杰. 补中益气丸对IEC-6细胞损伤模型NLRP3炎性体及相关细胞因子的影响[D]. 广州: 广州中医药大学, 2017.

    [45]

    黎思欣. 溃结灵对UC大鼠肠道内Caspase-1介导细胞焦亡的作用研究[D]. 广州: 广州中医药大学, 2019.

    [46]

    沈佳雯. 白术黄芪汤通过抑制NLRP3炎症小体治疗DSS诱导的小鼠溃疡性结肠炎[D]. 成都: 西南交通大学, 2018.

    [47]

    赵卓, 刘林, 宋囡, 等. 半夏泻心汤对溃疡性结肠炎大鼠NLRP3/Caspase-1细胞焦亡通路的影响[J]. 中国实验方剂学杂志, 2022, 28(16): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202216004.htm

    [48]

    吴娜, 万治平, 韩玲, 等. 黄芩汤对溃疡性结肠炎小鼠NLRP3/caspase-1细胞焦亡通路的影响[J]. 中国中药杂志, 2021, 46(5): 1191-1196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202105023.htm

    [49]

    曲超. 桦褐孔菌多糖对AOM/DSS诱导的结肠炎相关结直肠癌模型小鼠的影响及其机制的初步探讨[D]. 延边: 延边大学, 2019.

    [50]

    Joshi P, Joshi S, Semwal D, et al. Curcumin: An Insight into Molecular Pathways Involved in Anticancer Activity[J]. Mini Rev Med Chem, 2021, 21(17): 2420-2457. doi: 10.2174/1389557521666210122153823

    [51]

    但文超, 刘金垒, 何庆勇, 等. 基于网络药理学与数据挖掘探讨中药调节细胞焦亡用药规律[J]. 中国中医药信息杂志, 2021, 28(9): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYY202109008.htm

    [52]

    王容容, 蒋益兰, 田雪飞, 等. 健脾消癌方对结直肠癌移植模型裸鼠NLRP3炎性小体表达及免疫功能的影响[J]. 中华中医药杂志, 2020, 35(8): 3890-3893. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202008022.htm

    [53]

    郭垠梅. 西黄丸促进肝癌SMMC-7721细胞发生细胞焦亡作用机制研究[D]. 长沙: 湖南中医药大学, 2021.

    [54]

    焦建玮, 白玉杰, 白玉莲, 等. 葶苈大枣泻肺汤通过Caspase-1诱导A549细胞焦亡与凋亡的机制[J]. 中国实验方剂学杂志, 2022, 28(6): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202206007.htm

    [55]

    田雯, 刘伟, 李嘉丽, 等. 健脾化瘀解毒方调节NLRP3炎症小体活化的生物信息学研究[J]. 中药新药与临床药理, 2021, 32(9): 1321-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY202109014.htm

  • 加载中
计量
  • 文章访问数:  991
  • PDF下载数:  492
  • 施引文献:  0
出版历程
收稿日期:  2022-06-08
刊出日期:  2022-10-15

目录