间充质干细胞调控巨噬细胞极化在溃疡性结肠炎中的研究进展

蒋子寅, 韩昌鹏. 间充质干细胞调控巨噬细胞极化在溃疡性结肠炎中的研究进展[J]. 中国中西医结合消化杂志, 2023, 31(11): 897-902. doi: 10.3969/j.issn.1671-038X.2023.11.15
引用本文: 蒋子寅, 韩昌鹏. 间充质干细胞调控巨噬细胞极化在溃疡性结肠炎中的研究进展[J]. 中国中西医结合消化杂志, 2023, 31(11): 897-902. doi: 10.3969/j.issn.1671-038X.2023.11.15
JIANG Ziyin, HAN Changpeng. Research progress of mesenchymal stem cells regulating macrophage polarization in ulcerative colitis[J]. Chin J Integr Tradit West Med Dig, 2023, 31(11): 897-902. doi: 10.3969/j.issn.1671-038X.2023.11.15
Citation: JIANG Ziyin, HAN Changpeng. Research progress of mesenchymal stem cells regulating macrophage polarization in ulcerative colitis[J]. Chin J Integr Tradit West Med Dig, 2023, 31(11): 897-902. doi: 10.3969/j.issn.1671-038X.2023.11.15

间充质干细胞调控巨噬细胞极化在溃疡性结肠炎中的研究进展

  • 基金项目:
    国家自然科学基金(No:82174393,No:81874468)
详细信息

Research progress of mesenchymal stem cells regulating macrophage polarization in ulcerative colitis

More Information
  • 溃疡性结肠炎(ulcerative colitis,UC)是一种常见的全球范围性的炎症性肠病。因难以治愈且易复发,治疗费用高昂,严重影响患者的生活质量。目前UC的发病机制尚不明确,临床尚无特异性治疗方案。巨噬细胞在UC病理发展中发挥了关键作用,可诱导促炎表型的M1巨噬细胞以及抗炎表型的M2巨噬细胞免疫稳态。间充质干细胞(mesenchymal stem cells,MSCs)具有多向分化潜能和免疫调节能力,可调控巨噬细胞极化,维持巨噬细胞免疫稳态,改善体内炎症环境。本文综述MSCs调控巨噬细胞极化在UC中的功能和在治疗中的作用,以及其可能的作用机制,期望为未来UC的治疗提供新的见解。
  • 加载中
  • 图 1  MSCs调控巨噬细胞极化

    表 1  M2巨噬细胞亚型特征

    M2亚型 激活因子 表面标志物 分泌因子 功能作用
    M2a IL-4、IL-13、真菌或蠕虫感染 IL-1受体、CD206、Arg-1、FIZZ1、Ym1/2 IL-10、IL-1受体拮抗剂、TGF-β、CCL17、CCL18、CCL22、CCL24 消除炎症、愈合伤口、杀灭寄生虫
    M2b 免疫复合物、TLR/IL-1β配体 IL-6受体、IL-10受体、IL-12受体、CD86 IL-1、IL-6、IL-10、TNF-α、CCL1 增强Th2分化、加强感染、促进肿瘤进程
    M2c 糖皮质激素、IL-10、TGF-β CD163、CD206、TLR-1、TLR-8、Arg-1 IL-10、TGF-β、CCL13、CCL16、CCL18 免疫抑制、凋亡细胞的吞噬作用
    M2d IL-6、TLR拮抗剂 IL-10受体、IL-12受体 IL-10、IL-12、TNF-α、TGF-β、VEGF 血管生成、促进肿瘤进程
    下载: 导出CSV
  • [1]

    Schlegel N, Boerner K, Waschke J. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases-Lessons from experimental models and patients[J]. Acta Physiol(Oxf), 2021, 231(1): e13492. doi: 10.1111/apha.13492

    [2]

    GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Gastroenterol Hepatol, 2020, 5(1): 17-30. doi: 10.1016/S2468-1253(19)30333-4

    [3]

    Pan X, Zhu Q, Pan LL, et al. Macrophage immunometabolism in inflammatory bowel diseases: From pathogenesis to therapy[J]. Pharmacol Ther, 2022, 238: 108-176.

    [4]

    Park MD, Silvin A, Ginhoux F, et al. Macrophages in health and disease[J]. Cell, 2022, 185(23): 4259-4279. doi: 10.1016/j.cell.2022.10.007

    [5]

    Chhibba T, Ma C. Is there room for immunomodulators in ulcerative colitis?[J]. Expert Opin Biol Ther, 2020, 20(4): 379-390. doi: 10.1080/14712598.2020.1708896

    [6]

    Eshghi F, Tahmasebi S, Alimohammadi M, et al. Study of immunomodulatory effects of mesenchymal stem cell-derived exosomes in mouse model of LPS induced systemic inflammation[J]. Life Sci, 2022: 120938.

    [7]

    Zhang M, Johnson-Stephenson TK, Wang W, et al. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17(+)regulatory T cell[J]. Stem Cell Res Ther, 2022, 13(1): 484. doi: 10.1186/s13287-022-03174-7

    [8]

    Kaluzna A, Olczyk P, Komosinska-Vassev K. The Role of Innate and Adaptive Immune Cells in the Pathogenesis and Development of the Inflammatory Response in Ulcerative Colitis[J]. J Clin Med, 2022, 11(2): 400. doi: 10.3390/jcm11020400

    [9]

    Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. doi: 10.1016/j.ejphar.2020.173090

    [10]

    Du G, Xiong L, Li X, et al. Peroxisome Elevation Induces Stem Cell Differentiation and Intestinal Epithelial Repair[J]. Dev Cell, 2020, 53(2): 169-184. doi: 10.1016/j.devcel.2020.03.002

    [11]

    Fu Y, Li J, Li M, et al. Umbilical Cord Mesenchymal Stem Cells Ameliorate Inflammation-Related Tumorigenesis via Modulating Macrophages[J]. Stem Cells Int, 2022, 2022: 1617229.

    [12]

    Cao X, Duan L, Hou H, et al. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE2-mediated M2 macrophage polarization[J]. Theranostics, 2020, 10(17): 7697-7709. doi: 10.7150/thno.45434

    [13]

    Yu D, Zhao Y, Wang H, et al. IL-1beta pre-stimulation enhances the therapeutic effects of endometrial regenerative cells on experimental colitis[J]. Stem Cell Res Ther, 2021, 12(1): 324. doi: 10.1186/s13287-021-02392-9

    [14]

    Zhang N, Chen Y, Huang C, et al. Adipose-derived mesenchymal stem cells may reduce intestinal epithelial damage in ulcerative colitis by communicating with macrophages and blocking inflammatory pathways: an analysis in silico[J]. Aging(Albany NY), 2022, 14(6): 2665-2677.

    [15]

    Yuan Y, Ni S, Zhuge A, et al. Adipose-Derived Mesenchymal Stem Cells Reprogram M1 Macrophage Metabolism via PHD2/HIF-1alpha Pathway in Colitis Mice[J]. Front Immunol, 2022, 13: 859806. doi: 10.3389/fimmu.2022.859806

    [16]

    Shin TH, Ahn JS, Oh SJ, et al. TNF-alpha Priming Elicits Robust Immunomodulatory Potential of Human Tonsil-Derived Mesenchymal Stem Cells to Alleviate Murine Colitis[J]. Biomedicines, 2020, 8(12): 561. doi: 10.3390/biomedicines8120561

    [17]

    Alvites R, Branquinho M, Sousa AC, et al. Mesenchymal Stem/Stromal Cells and Their Paracrine Activity-Immunomodulation Mechanisms and How to Influence the Therapeutic Potential[J]. Pharmaceutics, 2022, 14(2): 381. doi: 10.3390/pharmaceutics14020381

    [18]

    Zheng Z, Wang J. Bone marrow mesenchymal stem cells combined with Atractylodes macrocephala polysaccharide attenuate ulcerative colitis[J]. Bioengineered, 2022, 13(1): 824-833. doi: 10.1080/21655979.2021.2012954

    [19]

    Altemus J, Dadgar N, Li Y, et al. Adipose tissue-derived mesenchymal stem cells' acellular product extracellular vesicles as a potential therapy for Crohn's disease[J]. J Cell Physiol, 2022, 237(7): 3001-3011. doi: 10.1002/jcp.30756

    [20]

    Liu J, Lai X, Bao Y, et al. Intraperitoneally Delivered Mesenchymal Stem Cells Alleviate Experimental Colitis Through THBS1-Mediated Induction of IL-10-Competent Regulatory B Cells[J]. Front Immunol, 2022, 13: 853894. doi: 10.3389/fimmu.2022.853894

    [21]

    Li Q, Lian Y, Deng Y, et al. mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD[J]. Mol Ther Nucleic Acids, 2021, 26: 222-236. doi: 10.1016/j.omtn.2021.07.009

    [22]

    Kang JY, Oh MK, Joo H, et al. Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2, 3-Dioxygenase Activity[J]. J Clin Med, 2020, 9(9): 2913. doi: 10.3390/jcm9092913

    [23]

    Ortiz-Virumbrales M, Menta R, Perez LM, et al. Human adipose mesenchymal stem cells modulate myeloid cells toward an anti-inflammatory and reparative phenotype: role of IL-6 and PGE2[J]. Stem Cell Res Ther, 2020, 11(1): 462. doi: 10.1186/s13287-020-01975-2

    [24]

    Shen Q, Huang Z, Yao J, et al. Extracellular vesicles-mediated interaction within intestinal microenvironment in inflammatory bowel disease[J]. J Adv Res, 2022, 37: 221-233. doi: 10.1016/j.jare.2021.07.002

    [25]

    An JH, Li Q, Bhang DH, et al. TNF-alpha and INF-gamma primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis[J]. Sci Rep, 2020, 10(1): 2115. doi: 10.1038/s41598-020-58909-4

    [26]

    An JH, Li Q, Ryu MO, et al. TSG-6 in extracellular vesicles from canine mesenchymal stem/stromal is a major factor in relieving DSS-induced colitis[J]. PLoS One, 2020, 15(2): e220756.

    [27]

    Qian W, Huang L, Xu Y, et al. Hypoxic ASCs-derived Exosomes Attenuate Colitis by Regulating Macrophage Polarization via miR-216a-5p/HMGB1 Axis[J]. Inflamm Bowel Dis, 2023;29(4): 602-619. doi: 10.1093/ibd/izac225

    [28]

    Liu H, Liang Z, Wang F, et al. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism[J]. JCI Insight, 2019, 4(24): e131273. doi: 10.1172/jci.insight.131273

    [29]

    Gan J, Sun L, Chen G, et al. Mesenchymal Stem Cell Exosomes Encapsulated Oral Microcapsules for Acute Colitis Treatment[J]. Adv Healthc Mater, 2022, 11(17): e2201105. doi: 10.1002/adhm.202201105

    [30]

    Jiao Y, Chen X, Nong B, et al. Transplantation of Wharton's jelly mesenchymal stem cells encapsulated with Hydroactive(R)Gel promotes diabetic wound antifibrotic healing in type 2 diabetic rats[J]. J Mater Chem B, 2022, 10(40): 8330-8346. doi: 10.1039/D2TB01649D

    [31]

    Li Y, Zhang D, Xu L, et al. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models[J]. Cell Mol Immunol, 2019, 16(12): 908-920. doi: 10.1038/s41423-019-0204-6

    [32]

    Abe Y, Ochiai D, Sato Y, et al. Prophylactic Therapy with Human Amniotic Fluid Stem Cells Improves Long-Term Cognitive Impairment in Rat Neonatal Sepsis Survivors[J]. Int J Mol Sci, 2020, 21(24): 9590. doi: 10.3390/ijms21249590

    [33]

    Velarde F, Ezquerra S, Delbruyere X, et al. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact[J]. Cell Mol Life Sci, 2022, 79(3): 177. doi: 10.1007/s00018-022-04207-3

    [34]

    Lu D, Jiao X, Jiang W, et al. Mesenchymal stem cells influence monocyte/macrophage phenotype: Regulatory mode and potential clinical applications[J]. Biomed Pharmacother, 2023, 165: 115042. doi: 10.1016/j.biopha.2023.115042

    [35]

    Yuan Y, Yuan L, Li L, et al. Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1alpha activation[J]. Stem Cells, 2021, 39(7): 913-928. doi: 10.1002/stem.3375

    [36]

    Boada-Romero E, Martinez J, Heckmann BL, et al. The clearance of dead cells by efferocytosis[J]. Nat Rev Mol Cell Biol, 2020, 21(7): 398-414. doi: 10.1038/s41580-020-0232-1

    [37]

    Zheng C, Sui B, Zhang X, et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes[J]. J Extracell Vesicles, 2021, 10(7): e12109. doi: 10.1002/jev2.12109

    [38]

    Liu J, Qiu X, Lv Y, et al. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages[J]. Stem Cell Res Ther, 2020, 11(1): 507. doi: 10.1186/s13287-020-02014-w

    [39]

    Ghahremani PM, Soudi S, Ghanbarian H, et al. Effect of efferocytosis of apoptotic mesenchymal stem cells(MSCs)on C57BL/6 peritoneal macrophages function[J]. Life Sci, 2018, 212: 203-212. doi: 10.1016/j.lfs.2018.09.052

  • 加载中

(1)

(1)

计量
  • 文章访问数:  1817
  • PDF下载数:  2159
  • 施引文献:  0
出版历程
收稿日期:  2023-07-02
刊出日期:  2023-11-15

目录