中性粒细胞在肝硬化门静脉血栓形成中的影响与作用机制

陈纪宏, 林果, 尹宇航, 等. 中性粒细胞在肝硬化门静脉血栓形成中的影响与作用机制[J]. 中国中西医结合消化杂志, 2024, 32(12): 1065-1070. doi: 10.3969/j.issn.1671-038X.2024.12.07
引用本文: 陈纪宏, 林果, 尹宇航, 等. 中性粒细胞在肝硬化门静脉血栓形成中的影响与作用机制[J]. 中国中西医结合消化杂志, 2024, 32(12): 1065-1070. doi: 10.3969/j.issn.1671-038X.2024.12.07
CHEN Jihong, LIN Guo, YIN Yuhang, et al. Impact and mechanisms of neutrophils in liver cirrhosis related portal vein thrombosis[J]. Chin J Integr Tradit West Med Dig, 2024, 32(12): 1065-1070. doi: 10.3969/j.issn.1671-038X.2024.12.07
Citation: CHEN Jihong, LIN Guo, YIN Yuhang, et al. Impact and mechanisms of neutrophils in liver cirrhosis related portal vein thrombosis[J]. Chin J Integr Tradit West Med Dig, 2024, 32(12): 1065-1070. doi: 10.3969/j.issn.1671-038X.2024.12.07

中性粒细胞在肝硬化门静脉血栓形成中的影响与作用机制

  • 基金项目:
    国家自然科学基金(No:82270659)
详细信息

Impact and mechanisms of neutrophils in liver cirrhosis related portal vein thrombosis

More Information
  • 肝硬化是全球范围内严重的公共健康问题,门静脉血栓形成(portal vein thrombosis,PVT)是其主要并发症之一。PVT显著影响患者的预后。近年来研究表明,中性粒细胞及其释放的中性粒细胞胞外捕网(neutrophil extracellular traps,NETs)在PVT的发生、发展中发挥关键作用。NETs通过促进凝血因子激活、血小板聚集及纤维蛋白沉积加速血栓形成,同时增强血栓稳定性,增加溶栓治疗难度。此外,干扰素通过诱导中性粒细胞活化和NETs形成,可能对PVT产生双重影响。本文系统总结了中性粒细胞及NETs在肝硬化PVT形成中的机制,包括其对凝血系统、血管内皮功能及纤维蛋白网络动态调控的作用,同时探讨了如脱氧核糖核酸酶(DNase)降解、抗炎及抗凝治疗的联合应用等抑制NETs形成的潜在治疗策略。结合现有临床与实验研究结果,本文提出了针对NETs及中性粒细胞活性的个体化治疗思路,为优化肝硬化PVT的诊断及治疗提供新视角。
  • 加载中
  • [1]

    Byass P. The global burden of liver disease: a challenge for methods and for public health[J]. BMC Med, 2014, 12: 159. doi: 10.1186/s12916-014-0159-5

    [2]

    Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis-aetiology, trends and predictions[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(6): 388-398. doi: 10.1038/s41575-023-00759-2

    [3]

    Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: How changes in paradigm are leading to successful new treatments[J]. J Hepatol, 2015, 62(1 Suppl): S121-S130.

    [4]

    Buob S, Johnston AN, Webster CR. Portal hypertension: pathophysiology, diagnosis, and treatment[J]. J Vet Intern Med, 2011, 25(2): 169-186. doi: 10.1111/j.1939-1676.2011.00691.x

    [5]

    European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis[J]. J Hepatol, 2018, 69(2): 406-460. doi: 10.1016/j.jhep.2018.03.024

    [6]

    Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients With and Without Cirrhosis[J]. Gastroenterology, 2019, 156(6): 1582-1599. e1. doi: 10.1053/j.gastro.2019.01.265

    [7]

    Senzolo M, Riva N, Dentali F, et al. Long-Term Outcome of Splanchnic Vein Thrombosis in Cirrhosis[J]. Clin Transl Gastroenterol, 2018, 9(8): 176. doi: 10.1038/s41424-018-0043-2

    [8]

    Mantovani A, Cassatella MA, Costantini C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity[J]. Nat Rev Immunol, 2011, 11(8): 519-531. doi: 10.1038/nri3024

    [9]

    Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome[J]. Blood, 2020, 136(10): 1169-1179. doi: 10.1182/blood.2020007008

    [10]

    Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018, 18(2): 134-147. doi: 10.1038/nri.2017.105

    [11]

    Martinod K, Wagner DD. Thrombosis: tangled up in NETs[J]. Blood, 2014, 123(18): 2768-2776. doi: 10.1182/blood-2013-10-463646

    [12]

    Duehren S, Uchida T, Tsuge M, et al. Interferon alpha induces a stronger antiviral effect than interferon lambda in HBV/HDV infected humanized mice[J]. Virus Res, 2024, 349: 199451. doi: 10.1016/j.virusres.2024.199451

    [13]

    Peng Y, Wu X, Zhang S, et al. The potential roles of type I interferon activated neutrophils and neutrophil extracellular traps(NETs)in the pathogenesis of primary Sjögren's syndrome[J]. Arthritis Res Ther, 2022, 24(1): 170. doi: 10.1186/s13075-022-02860-4

    [14]

    Basili S, Pastori D, Raparelli V, et al. Anticoagulant therapy in patients with liver cirrhosis and portal vein thrombosis: insights for the clinician[J]. Therap Adv Gastroenterol, 2018, 11: 1756284818793561. doi: 10.1177/1756284818793561

    [15]

    Shukla A, Giri S. Portal Vein Thrombosis in Cirrhosis[J]. J Clin Exp Hepatol, 2022, 12(3): 965-979. doi: 10.1016/j.jceh.2021.11.003

    [16]

    Lisman T, Leebeek FW. Hemostatic alterations in liver disease: a review on pathophysiology, clinical consequences, and treatment[J]. Dig Surg, 2007, 24(4): 250-258. doi: 10.1159/000103655

    [17]

    Tripodi A, Anstee QM, Sogaard KK, et al. Hypercoagulability in cirrhosis: causes and consequences[J]. J Thrombosis Haemostasis, 2011, 9(9): 1713-1723. doi: 10.1111/j.1538-7836.2011.04429.x

    [18]

    Pan J, Wang L, Gao F, et al. Epidemiology of portal vein thrombosis in liver cirrhosis: A systematic review and meta-analysis[J]. Eur J Intern Med, 2022, 104: 21-32. doi: 10.1016/j.ejim.2022.05.032

    [19]

    Zhou Y, Zhuang Z, Yu T, et al. Long-term efficacy and safety of anticoagulant for cavernous transformation of the portal vein cirrhotic patient with extrahepatic portal vein obstruction[J]. Thrombosis J, 2023, 21(1): 6. doi: 10.1186/s12959-023-00449-8

    [20]

    Prakash S, Bies J, Hassan M, et al. Portal vein thrombosis in cirrhosis: A literature review[J]. Front Med, 2023, 10: 1134801. doi: 10.3389/fmed.2023.1134801

    [21]

    Nery F, Chevret S, Condat B, et al. Causes and consequences of portal vein thrombosis in 1, 243 patients with cirrhosis: results of a longitudinal study[J]. Hepatology, 2015, 61(2): 660-667. doi: 10.1002/hep.27546

    [22]

    Sogaard KK, Astrup LB, Vilstrup H, et al. Portal vein thrombosis; risk factors, clinical presentation and treatment[J]. BMC Gastroenterol, 2007, 7: 34. doi: 10.1186/1471-230X-7-34

    [23]

    Amitrano L, Guardascione MA, Brancaccio V, et al. Risk factors and clinical presentation of portal vein thrombosis in patients with liver cirrhosis[J]. J Hepatol, 2004, 40(5): 736-741. doi: 10.1016/j.jhep.2004.01.001

    [24]

    Francoz C, Valla D, Durand F. Portal vein thrombosis, cirrhosis, and liver transplantation[J]. J Hepatol, 2012, 57(1): 203-212. doi: 10.1016/j.jhep.2011.12.034

    [25]

    Bhangui P, Fernandes ESM, Di Benedetto F, et al. Current management of portal vein thrombosis in liver transplantation[J]. Int J Surg, 2020, 82s: 122-127.

    [26]

    Chen H, Turon F, Hernández-Gea V, et al. Nontumoral portal vein thrombosis in patients awaiting liver transplantation[J]. Liver Transplant, 2016, 22(3): 352-365. doi: 10.1002/lt.24387

    [27]

    Di Benedetto F, Magistri P, Di Sandro S, et al. Portal vein thrombosis and liver transplantation: management, matching, and outcomes. A retrospective multicenter cohort study[J]. Int J Surg, 2024, 110(5): 2874-2882.

    [28]

    Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases[J]. Nat Rev Immunol, 2023, 23(5): 274-288. doi: 10.1038/s41577-022-00787-0

    [29]

    Sadik CD, Kim ND, Luster AD. Neutrophils cascading their way to inflammation[J]. Trends Immunol, 2011, 32(10): 452-460. doi: 10.1016/j.it.2011.06.008

    [30]

    Amulic B, Cazalet C, Hayes GL, et al. Neutrophil function: from mechanisms to disease[J]. Ann Rev Immunol, 2012, 30: 459-489. doi: 10.1146/annurev-immunol-020711-074942

    [31]

    Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation[J]. Nat Rev Immunol, 2013, 13(3): 159-175. doi: 10.1038/nri3399

    [32]

    Cassatella MA, Östberg NK, Tamassia N, et al. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines[J]. Trends Immunol, 2019, 40(7): 648-664. doi: 10.1016/j.it.2019.05.003

    [33]

    Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation[J]. Ann Rev Pathol, 2020, 15: 493-518. doi: 10.1146/annurev-pathmechdis-012419-032847

    [34]

    Vestweber D. How leukocytes cross the vascular endothelium[J]. Nat Rev Immunol, 2015, 15(11): 692-704. doi: 10.1038/nri3908

    [35]

    Ruhnau J, Schulze J, Dressel A, et al. Thrombosis, Neuroinflammation, and Poststroke Infection: The Multifaceted Role of Neutrophils in Stroke[J]. J Immunol Res, 2017, 2017: 5140679.

    [36]

    Boeltz S, Amini P, Anders HJ, et al. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps[J]. Cell Death Differ, 2019, 26(3): 395-408. doi: 10.1038/s41418-018-0261-x

    [37]

    Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps(NETs)in Disease: Potential Anti-NETs Therapeutics[J]. Clin Rev Allergy Immunol, 2021, 61(2): 194-211. doi: 10.1007/s12016-020-08804-7

    [38]

    Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci U S A, 2015, 112(9): 2817-2822. doi: 10.1073/pnas.1414055112

    [39]

    Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination[J]. Front Immunol, 2016, 7: 461.

    [40]

    Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps[J]. Sci Immunol, 2018, 3(26): eaar6676. doi: 10.1126/sciimmunol.aar6676

    [41]

    Liu Y, Kaplan MJ. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire[J]. Clin Rev Allergy Immunol, 2021, 60(1): 1-16. doi: 10.1007/s12016-020-08816-3

    [42]

    Thålin C, Hisada Y, Lundström S, et al. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738. doi: 10.1161/ATVBAHA.119.312463

    [43]

    Albillos A, Martin-Mateos R, Van der Merwe S, et al. Cirrhosis-associated immune dysfunction[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 112-134. doi: 10.1038/s41575-021-00520-7

    [44]

    Noor MT, Manoria P. Immune Dysfunction in Cirrhosis[J]. J Clin Transl Hepatol, 2017, 5(1): 50-58.

    [45]

    Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways[J]. Int Immunopharmacol, 2013, 17(3): 638-650. doi: 10.1016/j.intimp.2013.06.034

    [46]

    Pomacu MM, Traşcǎ MD, Pǎdureanu V, et al. Interrelation of inflammation and oxidative stress in liver cirrhosis[J]. Exp Ther Med, 2021, 21(6): 602. doi: 10.3892/etm.2021.10034

    [47]

    Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance[J]. J Hepatol, 2014, 61(6): 1385-1396. doi: 10.1016/j.jhep.2014.08.010

    [48]

    Che Y, Chien Y, Zhu Y, et al. GSDMD-Dependent Neutrophil Extracellular Traps Mediate Portal Vein Thrombosis and Associated Fibrosis in Cirrhosis[J]. Int J Mol Sci, 2024, 25(16): 9099. doi: 10.3390/ijms25169099

    [49]

    Xu X, Xu S, Zhang Y, et al. Neutrophil extracellular traps formation may be involved in the association of propranolol with the development of portal vein thrombosis[J]. Thromb Res, 2024, 238: 208-221. doi: 10.1016/j.thromres.2024.04.030

    [50]

    Li W, Wang Z, Su C, et al. The effect of neutrophil extracellular traps in venous thrombosis[J]. Thromb J, 2023, 21(1): 67. doi: 10.1186/s12959-023-00512-4

    [51]

    Xu X, Wu Y, Xu S, et al. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis[J]. Thromb J, 2022, 20(1): 63. doi: 10.1186/s12959-022-00421-y

    [52]

    Noubouossie DF, Reeves BN, Strahl BD, et al. Neutrophils: back in the thrombosis spotlight[J]. Blood, 2019, 133(20): 2186-2197. doi: 10.1182/blood-2018-10-862243

    [53]

    Noubouossie DF, Whelihan MF, Yu YB, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps[J]. Blood, 2017, 129(8): 1021-1029. doi: 10.1182/blood-2016-06-722298

    [54]

    Li J, Tong D, Song B, et al. Inflammatory cytokines induce neutrophil extracellular traps interaction with activated platelets and endothelial cells exacerbate coagulation in moderate and severe essential hypertension[J]. J Hypertens, 2022, 40(11): 2219-2229. doi: 10.1097/HJH.0000000000003250

    [55]

    Zhang Y, Wang C, Yu M, et al. Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer[J]. Thromb Res, 2019, 180: 87-97. doi: 10.1016/j.thromres.2019.06.005

    [56]

    Ducroux C, Di Meglio L, Loyau S, et al. Thrombus Neutrophil Extracellular Traps Content Impair tPA-Induced Thrombolysis in Acute Ischemic Stroke[J]. Stroke, 2018, 49(3): 754-757. doi: 10.1161/STROKEAHA.117.019896

    [57]

    Shi Y, Gauer JS, Baker SR, et al. Neutrophils can promote clotting via FXI and impact clot structure via neutrophil extracellular traps in a distinctive manner in vitro[J]. Sci Rep, 2021, 11(1): 1718. doi: 10.1038/s41598-021-81268-7

    [58]

    Xing Y, Jiang Y, Xing S, et al. Neutrophil extracellular traps are associated with enhanced procoagulant activity in liver cirrhosis patients with portal vein thrombosis[J]. J Clin Lab Anal, 2022, 36(5): e24433. doi: 10.1002/jcla.24433

    [59]

    Vrints CJM. Deep venous thrombosis and endothelial dysfunction in cancer: prevention and early initiated rehabilitation should be integral to a cardio-oncology programme[J]. Eur J Prev Cardiol, 2022, 29(8): 1244-1247. doi: 10.1093/eurjpc/zwab117

    [60]

    Reyes-García AML, Aroca A, Arroyo AB, et al. Neutrophil extracellular trap components increase the expression of coagulation factors[J]. Biomed Rep, 2019, 10(3): 195-201.

    [61]

    Lisman T, Caldwell SH, Intagliata NM. Haemostatic alterations and management of haemostasis in patients with cirrhosis[J]. J Hepatol, 2022, 76(6): 1291-1305.

    [62]

    Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nat Med, 2010, 16(8): 887-896. doi: 10.1038/nm.2184

    [63]

    Bhasym A, Annarapu GK, Saha S, et al. Neutrophils develop rapid proinflammatory response after engulfing Hb-activated platelets under intravascular hemolysis[J]. Clin Exp Immunol, 2019, 197(2): 131-140.

    [64]

    Weiss E, Rautou PE, Fasseu M, et al. Type I interferon signaling in systemic immune cells from patients with alcoholic cirrhosis and its association with outcome[J]. J Hepatol, 2017, 66(5): 930-941.

    [65]

    Friedlová N, Zavadil Kokáš F, Hupp TR, et al. IFITM protein regulation and functions: Far beyond the fight against viruses[J]. Front Immunol, 2022, 13: 1042368. doi: 10.3389/fimmu.2022.1042368

    [66]

    Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, et al. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians[J]. J Thromb Thrombolysis, 2017, 44(3): 377-385.

    [67]

    Martinelli S, Urosevic M, Daryadel A, et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation[J]. J Biol Chem, 2004, 279(42): 44123-44132.

    [68]

    Folco EJ, Mawson TL, Vromman A, et al. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G[J]. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1901-1912.

    [69]

    Sakamoto E, Hato F, Kato T, et al. Type Ⅰ and type Ⅱ interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2[J]. J Leukoc Biol, 2005, 78(1): 301-309.

    [70]

    Ryan TAJ, O'Neill LAJ. An Emerging Role for Type Ⅰ Interferons as Critical Regulators of Blood Coagulation[J]. Cells, 2023, 12(5): 778.

    [71]

    Lapponi MJ, Carestia A, Landoni VI, et al. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs[J]. J Pharmacol Exp Ther, 2013, 345(3): 430-437.

    [72]

    Koh JH, Liew ZH, Ng GK, et al. Efficacy and safety of direct oral anticoagulants versus vitamin K antagonist for portal vein thrombosis in cirrhosis: A systematic review and meta-analysis[J]. Dig Liver Dis, 2022, 54(1): 56-62.

    [73]

    Manfredi AA, Rovere-Querini P, D'Angelo A, et al. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps[J]. Pharmacol Res, 2017, 123: 146-156.

    [74]

    Yang J, Wu Z, Long Q, et al. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13[J]. Front Immunol, 2020, 11: 610696.

    [75]

    MEIm XD, Cao YF, Che YY, et al. Danshen: a phytochemical and pharmacological overview[J]. Chin J Nat Med, 2019, 17(1): 59-80.

    [76]

    Fu J, Wang Z, Huang L, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus(Huangqi)[J]. Phytother Res, 2014, 28(9): 1275-1283.

  • 加载中
计量
  • 文章访问数:  127
  • 施引文献:  0
出版历程
收稿日期:  2024-08-27
刊出日期:  2024-12-15

返回顶部

目录