Impact and mechanisms of neutrophils in liver cirrhosis related portal vein thrombosis
-
摘要: 肝硬化是全球范围内严重的公共健康问题,门静脉血栓形成(portal vein thrombosis,PVT)是其主要并发症之一。PVT显著影响患者的预后。近年来研究表明,中性粒细胞及其释放的中性粒细胞胞外捕网(neutrophil extracellular traps,NETs)在PVT的发生、发展中发挥关键作用。NETs通过促进凝血因子激活、血小板聚集及纤维蛋白沉积加速血栓形成,同时增强血栓稳定性,增加溶栓治疗难度。此外,干扰素通过诱导中性粒细胞活化和NETs形成,可能对PVT产生双重影响。本文系统总结了中性粒细胞及NETs在肝硬化PVT形成中的机制,包括其对凝血系统、血管内皮功能及纤维蛋白网络动态调控的作用,同时探讨了如脱氧核糖核酸酶(DNase)降解、抗炎及抗凝治疗的联合应用等抑制NETs形成的潜在治疗策略。结合现有临床与实验研究结果,本文提出了针对NETs及中性粒细胞活性的个体化治疗思路,为优化肝硬化PVT的诊断及治疗提供新视角。Abstract: Liver cirrhosis is a severe global public health issue, with portal vein thrombosis(PVT) being one of its major complications. PVT significantly impacts patient prognosis. Recent studies have demonstrated that neutrophils and their released neutrophil extracellular traps(NETs) play a crucial role in the development and progression of PVT. NETs accelerate thrombosis by promoting coagulation factor activation, platelet aggregation, and fibrin deposition while enhancing thrombus stability, thereby increasing the difficulty of thrombolytic therapy. Additionally, interferon, by inducing neutrophil activation and NETs formation, may exert dual effects on PVT. This article systematically summarizes the mechanisms by which neutrophils and NETs contribute to the formation of cirrhosis-related PVT, including their regulation of coagulation systems, vascular endothelial functions, and fibrin network dynamics. Furthermore, potential therapeutic strategies targeting NETs, such as DNase degradation, anti-inflammatory treatments, and combined anticoagulant therapies, are discussed. Based on current clinical and experimental findings, this article proposes personalized therapeutic approaches targeting NETs and neutrophil activity, providing new perspectives for optimizing the diagnosis and treatment of cirrhosis-related PVT.
-
Key words:
- liver cirrhosis /
- neutrophils /
- neutrophil extracellular traps /
- portal vein thrombosis
-
[1] Byass P. The global burden of liver disease: a challenge for methods and for public health[J]. BMC Med, 2014, 12: 159. doi: 10.1186/s12916-014-0159-5
[2] Huang DQ, Terrault NA, Tacke F, et al. Global epidemiology of cirrhosis-aetiology, trends and predictions[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(6): 388-398. doi: 10.1038/s41575-023-00759-2
[3] Bosch J, Groszmann RJ, Shah VH. Evolution in the understanding of the pathophysiological basis of portal hypertension: How changes in paradigm are leading to successful new treatments[J]. J Hepatol, 2015, 62(1 Suppl): S121-S130.
[4] Buob S, Johnston AN, Webster CR. Portal hypertension: pathophysiology, diagnosis, and treatment[J]. J Vet Intern Med, 2011, 25(2): 169-186. doi: 10.1111/j.1939-1676.2011.00691.x
[5] European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis[J]. J Hepatol, 2018, 69(2): 406-460. doi: 10.1016/j.jhep.2018.03.024
[6] Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients With and Without Cirrhosis[J]. Gastroenterology, 2019, 156(6): 1582-1599. e1. doi: 10.1053/j.gastro.2019.01.265
[7] Senzolo M, Riva N, Dentali F, et al. Long-Term Outcome of Splanchnic Vein Thrombosis in Cirrhosis[J]. Clin Transl Gastroenterol, 2018, 9(8): 176. doi: 10.1038/s41424-018-0043-2
[8] Mantovani A, Cassatella MA, Costantini C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity[J]. Nat Rev Immunol, 2011, 11(8): 519-531. doi: 10.1038/nri3024
[9] Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome[J]. Blood, 2020, 136(10): 1169-1179. doi: 10.1182/blood.2020007008
[10] Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018, 18(2): 134-147. doi: 10.1038/nri.2017.105
[11] Martinod K, Wagner DD. Thrombosis: tangled up in NETs[J]. Blood, 2014, 123(18): 2768-2776. doi: 10.1182/blood-2013-10-463646
[12] Duehren S, Uchida T, Tsuge M, et al. Interferon alpha induces a stronger antiviral effect than interferon lambda in HBV/HDV infected humanized mice[J]. Virus Res, 2024, 349: 199451. doi: 10.1016/j.virusres.2024.199451
[13] Peng Y, Wu X, Zhang S, et al. The potential roles of type I interferon activated neutrophils and neutrophil extracellular traps(NETs)in the pathogenesis of primary Sjögren's syndrome[J]. Arthritis Res Ther, 2022, 24(1): 170. doi: 10.1186/s13075-022-02860-4
[14] Basili S, Pastori D, Raparelli V, et al. Anticoagulant therapy in patients with liver cirrhosis and portal vein thrombosis: insights for the clinician[J]. Therap Adv Gastroenterol, 2018, 11: 1756284818793561. doi: 10.1177/1756284818793561
[15] Shukla A, Giri S. Portal Vein Thrombosis in Cirrhosis[J]. J Clin Exp Hepatol, 2022, 12(3): 965-979. doi: 10.1016/j.jceh.2021.11.003
[16] Lisman T, Leebeek FW. Hemostatic alterations in liver disease: a review on pathophysiology, clinical consequences, and treatment[J]. Dig Surg, 2007, 24(4): 250-258. doi: 10.1159/000103655
[17] Tripodi A, Anstee QM, Sogaard KK, et al. Hypercoagulability in cirrhosis: causes and consequences[J]. J Thrombosis Haemostasis, 2011, 9(9): 1713-1723. doi: 10.1111/j.1538-7836.2011.04429.x
[18] Pan J, Wang L, Gao F, et al. Epidemiology of portal vein thrombosis in liver cirrhosis: A systematic review and meta-analysis[J]. Eur J Intern Med, 2022, 104: 21-32. doi: 10.1016/j.ejim.2022.05.032
[19] Zhou Y, Zhuang Z, Yu T, et al. Long-term efficacy and safety of anticoagulant for cavernous transformation of the portal vein cirrhotic patient with extrahepatic portal vein obstruction[J]. Thrombosis J, 2023, 21(1): 6. doi: 10.1186/s12959-023-00449-8
[20] Prakash S, Bies J, Hassan M, et al. Portal vein thrombosis in cirrhosis: A literature review[J]. Front Med, 2023, 10: 1134801. doi: 10.3389/fmed.2023.1134801
[21] Nery F, Chevret S, Condat B, et al. Causes and consequences of portal vein thrombosis in 1, 243 patients with cirrhosis: results of a longitudinal study[J]. Hepatology, 2015, 61(2): 660-667. doi: 10.1002/hep.27546
[22] Sogaard KK, Astrup LB, Vilstrup H, et al. Portal vein thrombosis; risk factors, clinical presentation and treatment[J]. BMC Gastroenterol, 2007, 7: 34. doi: 10.1186/1471-230X-7-34
[23] Amitrano L, Guardascione MA, Brancaccio V, et al. Risk factors and clinical presentation of portal vein thrombosis in patients with liver cirrhosis[J]. J Hepatol, 2004, 40(5): 736-741. doi: 10.1016/j.jhep.2004.01.001
[24] Francoz C, Valla D, Durand F. Portal vein thrombosis, cirrhosis, and liver transplantation[J]. J Hepatol, 2012, 57(1): 203-212. doi: 10.1016/j.jhep.2011.12.034
[25] Bhangui P, Fernandes ESM, Di Benedetto F, et al. Current management of portal vein thrombosis in liver transplantation[J]. Int J Surg, 2020, 82s: 122-127.
[26] Chen H, Turon F, Hernández-Gea V, et al. Nontumoral portal vein thrombosis in patients awaiting liver transplantation[J]. Liver Transplant, 2016, 22(3): 352-365. doi: 10.1002/lt.24387
[27] Di Benedetto F, Magistri P, Di Sandro S, et al. Portal vein thrombosis and liver transplantation: management, matching, and outcomes. A retrospective multicenter cohort study[J]. Int J Surg, 2024, 110(5): 2874-2882.
[28] Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases[J]. Nat Rev Immunol, 2023, 23(5): 274-288. doi: 10.1038/s41577-022-00787-0
[29] Sadik CD, Kim ND, Luster AD. Neutrophils cascading their way to inflammation[J]. Trends Immunol, 2011, 32(10): 452-460. doi: 10.1016/j.it.2011.06.008
[30] Amulic B, Cazalet C, Hayes GL, et al. Neutrophil function: from mechanisms to disease[J]. Ann Rev Immunol, 2012, 30: 459-489. doi: 10.1146/annurev-immunol-020711-074942
[31] Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation[J]. Nat Rev Immunol, 2013, 13(3): 159-175. doi: 10.1038/nri3399
[32] Cassatella MA, Östberg NK, Tamassia N, et al. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines[J]. Trends Immunol, 2019, 40(7): 648-664. doi: 10.1016/j.it.2019.05.003
[33] Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation[J]. Ann Rev Pathol, 2020, 15: 493-518. doi: 10.1146/annurev-pathmechdis-012419-032847
[34] Vestweber D. How leukocytes cross the vascular endothelium[J]. Nat Rev Immunol, 2015, 15(11): 692-704. doi: 10.1038/nri3908
[35] Ruhnau J, Schulze J, Dressel A, et al. Thrombosis, Neuroinflammation, and Poststroke Infection: The Multifaceted Role of Neutrophils in Stroke[J]. J Immunol Res, 2017, 2017: 5140679.
[36] Boeltz S, Amini P, Anders HJ, et al. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps[J]. Cell Death Differ, 2019, 26(3): 395-408. doi: 10.1038/s41418-018-0261-x
[37] Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps(NETs)in Disease: Potential Anti-NETs Therapeutics[J]. Clin Rev Allergy Immunol, 2021, 61(2): 194-211. doi: 10.1007/s12016-020-08804-7
[38] Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx[J]. Proc Natl Acad Sci U S A, 2015, 112(9): 2817-2822. doi: 10.1073/pnas.1414055112
[39] Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination[J]. Front Immunol, 2016, 7: 461.
[40] Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps[J]. Sci Immunol, 2018, 3(26): eaar6676. doi: 10.1126/sciimmunol.aar6676
[41] Liu Y, Kaplan MJ. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire[J]. Clin Rev Allergy Immunol, 2021, 60(1): 1-16. doi: 10.1007/s12016-020-08816-3
[42] Thålin C, Hisada Y, Lundström S, et al. Neutrophil Extracellular Traps: Villains and Targets in Arterial, Venous, and Cancer-Associated Thrombosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738. doi: 10.1161/ATVBAHA.119.312463
[43] Albillos A, Martin-Mateos R, Van der Merwe S, et al. Cirrhosis-associated immune dysfunction[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 112-134. doi: 10.1038/s41575-021-00520-7
[44] Noor MT, Manoria P. Immune Dysfunction in Cirrhosis[J]. J Clin Transl Hepatol, 2017, 5(1): 50-58.
[45] Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways[J]. Int Immunopharmacol, 2013, 17(3): 638-650. doi: 10.1016/j.intimp.2013.06.034
[46] Pomacu MM, Traşcǎ MD, Pǎdureanu V, et al. Interrelation of inflammation and oxidative stress in liver cirrhosis[J]. Exp Ther Med, 2021, 21(6): 602. doi: 10.3892/etm.2021.10034
[47] Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance[J]. J Hepatol, 2014, 61(6): 1385-1396. doi: 10.1016/j.jhep.2014.08.010
[48] Che Y, Chien Y, Zhu Y, et al. GSDMD-Dependent Neutrophil Extracellular Traps Mediate Portal Vein Thrombosis and Associated Fibrosis in Cirrhosis[J]. Int J Mol Sci, 2024, 25(16): 9099. doi: 10.3390/ijms25169099
[49] Xu X, Xu S, Zhang Y, et al. Neutrophil extracellular traps formation may be involved in the association of propranolol with the development of portal vein thrombosis[J]. Thromb Res, 2024, 238: 208-221. doi: 10.1016/j.thromres.2024.04.030
[50] Li W, Wang Z, Su C, et al. The effect of neutrophil extracellular traps in venous thrombosis[J]. Thromb J, 2023, 21(1): 67. doi: 10.1186/s12959-023-00512-4
[51] Xu X, Wu Y, Xu S, et al. Clinical significance of neutrophil extracellular traps biomarkers in thrombosis[J]. Thromb J, 2022, 20(1): 63. doi: 10.1186/s12959-022-00421-y
[52] Noubouossie DF, Reeves BN, Strahl BD, et al. Neutrophils: back in the thrombosis spotlight[J]. Blood, 2019, 133(20): 2186-2197. doi: 10.1182/blood-2018-10-862243
[53] Noubouossie DF, Whelihan MF, Yu YB, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps[J]. Blood, 2017, 129(8): 1021-1029. doi: 10.1182/blood-2016-06-722298
[54] Li J, Tong D, Song B, et al. Inflammatory cytokines induce neutrophil extracellular traps interaction with activated platelets and endothelial cells exacerbate coagulation in moderate and severe essential hypertension[J]. J Hypertens, 2022, 40(11): 2219-2229. doi: 10.1097/HJH.0000000000003250
[55] Zhang Y, Wang C, Yu M, et al. Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer[J]. Thromb Res, 2019, 180: 87-97. doi: 10.1016/j.thromres.2019.06.005
[56] Ducroux C, Di Meglio L, Loyau S, et al. Thrombus Neutrophil Extracellular Traps Content Impair tPA-Induced Thrombolysis in Acute Ischemic Stroke[J]. Stroke, 2018, 49(3): 754-757. doi: 10.1161/STROKEAHA.117.019896
[57] Shi Y, Gauer JS, Baker SR, et al. Neutrophils can promote clotting via FXI and impact clot structure via neutrophil extracellular traps in a distinctive manner in vitro[J]. Sci Rep, 2021, 11(1): 1718. doi: 10.1038/s41598-021-81268-7
[58] Xing Y, Jiang Y, Xing S, et al. Neutrophil extracellular traps are associated with enhanced procoagulant activity in liver cirrhosis patients with portal vein thrombosis[J]. J Clin Lab Anal, 2022, 36(5): e24433. doi: 10.1002/jcla.24433
[59] Vrints CJM. Deep venous thrombosis and endothelial dysfunction in cancer: prevention and early initiated rehabilitation should be integral to a cardio-oncology programme[J]. Eur J Prev Cardiol, 2022, 29(8): 1244-1247. doi: 10.1093/eurjpc/zwab117
[60] Reyes-García AML, Aroca A, Arroyo AB, et al. Neutrophil extracellular trap components increase the expression of coagulation factors[J]. Biomed Rep, 2019, 10(3): 195-201.
[61] Lisman T, Caldwell SH, Intagliata NM. Haemostatic alterations and management of haemostasis in patients with cirrhosis[J]. J Hepatol, 2022, 76(6): 1291-1305.
[62] Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nat Med, 2010, 16(8): 887-896. doi: 10.1038/nm.2184
[63] Bhasym A, Annarapu GK, Saha S, et al. Neutrophils develop rapid proinflammatory response after engulfing Hb-activated platelets under intravascular hemolysis[J]. Clin Exp Immunol, 2019, 197(2): 131-140.
[64] Weiss E, Rautou PE, Fasseu M, et al. Type I interferon signaling in systemic immune cells from patients with alcoholic cirrhosis and its association with outcome[J]. J Hepatol, 2017, 66(5): 930-941.
[65] Friedlová N, Zavadil Kokáš F, Hupp TR, et al. IFITM protein regulation and functions: Far beyond the fight against viruses[J]. Front Immunol, 2022, 13: 1042368. doi: 10.3389/fimmu.2022.1042368
[66] Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, et al. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians[J]. J Thromb Thrombolysis, 2017, 44(3): 377-385.
[67] Martinelli S, Urosevic M, Daryadel A, et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation[J]. J Biol Chem, 2004, 279(42): 44123-44132.
[68] Folco EJ, Mawson TL, Vromman A, et al. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G[J]. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1901-1912.
[69] Sakamoto E, Hato F, Kato T, et al. Type Ⅰ and type Ⅱ interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2[J]. J Leukoc Biol, 2005, 78(1): 301-309.
[70] Ryan TAJ, O'Neill LAJ. An Emerging Role for Type Ⅰ Interferons as Critical Regulators of Blood Coagulation[J]. Cells, 2023, 12(5): 778.
[71] Lapponi MJ, Carestia A, Landoni VI, et al. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs[J]. J Pharmacol Exp Ther, 2013, 345(3): 430-437.
[72] Koh JH, Liew ZH, Ng GK, et al. Efficacy and safety of direct oral anticoagulants versus vitamin K antagonist for portal vein thrombosis in cirrhosis: A systematic review and meta-analysis[J]. Dig Liver Dis, 2022, 54(1): 56-62.
[73] Manfredi AA, Rovere-Querini P, D'Angelo A, et al. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps[J]. Pharmacol Res, 2017, 123: 146-156.
[74] Yang J, Wu Z, Long Q, et al. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13[J]. Front Immunol, 2020, 11: 610696.
[75] MEIm XD, Cao YF, Che YY, et al. Danshen: a phytochemical and pharmacological overview[J]. Chin J Nat Med, 2019, 17(1): 59-80.
[76] Fu J, Wang Z, Huang L, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus(Huangqi)[J]. Phytother Res, 2014, 28(9): 1275-1283.
计量
- 文章访问数: 127
- 施引文献: 0