基于信号通路探讨清热方药调控溃疡性结肠炎“炎癌转化”的研究进展

曾铖, 顾思臻, 黄诗韵, 等. 基于信号通路探讨清热方药调控溃疡性结肠炎“炎癌转化”的研究进展[J]. 中国中西医结合消化杂志, 2024, 32(2): 170-175. doi: 10.3969/j.issn.1671-038X.2024.02.16
引用本文: 曾铖, 顾思臻, 黄诗韵, 等. 基于信号通路探讨清热方药调控溃疡性结肠炎“炎癌转化”的研究进展[J]. 中国中西医结合消化杂志, 2024, 32(2): 170-175. doi: 10.3969/j.issn.1671-038X.2024.02.16
ZENG Cheng, GU Sizhen, HUANG Shiyun, et al. Research progress on Heat-clearing Chinese Medicine regulates 'inflammation-cancer transformation' of ulcerative colitis based on the signaling pathway[J]. Chin J Integr Tradit West Med Dig, 2024, 32(2): 170-175. doi: 10.3969/j.issn.1671-038X.2024.02.16
Citation: ZENG Cheng, GU Sizhen, HUANG Shiyun, et al. Research progress on Heat-clearing Chinese Medicine regulates "inflammation-cancer transformation" of ulcerative colitis based on the signaling pathway[J]. Chin J Integr Tradit West Med Dig, 2024, 32(2): 170-175. doi: 10.3969/j.issn.1671-038X.2024.02.16

基于信号通路探讨清热方药调控溃疡性结肠炎“炎癌转化”的研究进展

  • 基金项目:
    国家自然科学基金项目(No:82174288);上海市“科技创新行动计划”医学创新研究专项(No:20Y21901900);上海市2022年度“科技创新行动计划”生物医药科技支撑专项项目(No:22S21903500);上海市卫健委“医苑新星”青年医学人才培养项目[No:沪卫计人事〔2019〕72号]
详细信息

Research progress on Heat-clearing Chinese Medicine regulates "inflammation-cancer transformation" of ulcerative colitis based on the signaling pathway

More Information
  • 溃疡性结肠炎(ulcerative colitis,UC)是一类原因不明的特发性、持续性的炎症性肠病,以腹痛、黏液脓血便及里急后重等临床表现为主要特征。本病多反复发作难愈,持续的炎症反应刺激肠黏膜导致肠道纤维化乃至癌变。中医认为UC病因离不开热邪。清热方药在治疗UC上具有疗效确定、不良反应轻等诸多优点,在临床运用极为广泛。既往基于UC慢性炎症及易于癌变的特点研究了诸多相关信号通路,控制“炎癌转化”亦是目前治疗UC的临床新途径、新方法。近些年关于清热方药干预UC的实验愈发增多,本文旨在总结清热方药从“炎癌转化”角度探讨UC治疗的6条通路,即TLR4/NF-κB信号通路、PI3K/AKT信号通路、MAPK信号通路、IL-6/JAK2/STAT3信号通路、Nrf2/NQO1信号通路、NLRP3/Caspase-1信号通路,以期为中医药治疗UC提供新思路。
  • 加载中
  • 表 1  TLR4/NF-κB信号通路涉及方药和机制

    方药 调节机制
    黄芩苷[20] 调节细胞因子(IL-6↓)
    黄连碱[21] 调节细胞因子(TNF-α、IFN-γ、IL-1β、IL-6、IL-17↓,IL-10、TGF-β↑);保护肠上皮黏膜屏障(ZO-1、ZO-2、occludin、claudin-1↑)
    青黛[23] 调节细胞因子(IL-1β、IL-6↓);拮抗氧化应激(MPO↓)
    下载: 导出CSV

    表 2  PI3K/AKT信号通路涉及方药和机制

    方药 调节机制
    黄芩苷[30] 调节细胞因子(IL-6、TNF-α、IL-1β↓);抗凋亡(Caspase-3、Caspase-9、Bax、FasL↓,Bcl-2↑)
    氧化苦参碱[31] 调节细胞因子(IL-6、TNF-α、IL-1β↓);调节免疫细胞分化(Th1、Th17↓)
    黄连、厚朴[32] 调节细胞因子(IL-6、TNF-α、IL-1β↓);拮抗氧化应激(MPO↓);抗凋亡(cleaved caspase-3↓,Bcl-2↑)
    下载: 导出CSV

    表 3  MAPK信号通路涉及方药和机制

    方药 调节机制
    小檗碱[36] 调节细胞因子(IL-1β、IL-6、TNF-α↓,TGF-β↑);拮抗氧化应激(MPO、NO、NOS2↓,GSH↑);抗凋亡(Caspase-3、Bax↓,Bcl-2↑)
    白头翁皂苷B4[37] 调节细胞因子(IL-1β、IL-6、TNF-α↓);拮抗氧化应激(NO↓)
    葛根芩连汤[38] 保护肠上皮黏膜屏障(occludin、ZO-1↑);调节细胞因子(TNF-α、IL-1β↓)
    加味白头翁汤[40] 保护肠上皮黏膜屏障(occludin、claudin-1、ZO-1↑)
    下载: 导出CSV

    表 4  IL-6/JAK2/STAT3信号通路涉及方药和机制

    方药 调节机制
    葛根芩连汤[43] 调节细胞因子(TNF-α、IL-12↓);拮抗氧化应激(MPO↓);调节免疫细胞分化(Th17/Treg↓)
    黄连解毒汤[44] 调节细胞因子(TNF-α、IL-6、IL-1β↓);拮抗氧化应激(MPO↓)
    下载: 导出CSV

    表 5  Nrf2/NQO1信号通路涉及方药和机制

    方药 调节机制
    芍药汤[46] 拮抗氧化应激(GR、TR、HO-1↑)
    葛根芩连汤[47] 拮抗氧化应激(MPO、LPO、MDA↓,T-SOD、CAT、GSH、HO-1↑)
    下载: 导出CSV

    表 6  NLRP3/Caspase-1信号通路涉及方药和机制

    方药 调节机制
    加味芍药汤[50] 调节细胞因子(TNF-α、IL-1β、IL-6↓);抑制NLRP3炎症小体
    忍冬苷[51] 抑制NLRP3炎症小体
    黄芩汤[52] 调节细胞因子(IL-18、IL-1β↓);抑制NLRP3炎症小体
    下载: 导出CSV
  • [1]

    Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis[J]. Nat Rev Dis Primers, 2020, 6(1): 74. doi: 10.1038/s41572-020-0205-x

    [2]

    Ng SC, Kaplan GG, Tang W, et al. Population Density and Risk of Inflammatory Bowel Disease: A Prospective Population-Based Study in 13 Countries or Regions in Asia-Pacific[J]. Am J Gastroenterol, 2019, 114(1): 107-115. doi: 10.1038/s41395-018-0233-2

    [3]

    Raine T, Bonovas S, Burisch J, et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment[J]. J Crohns Colitis, 2022, 16(1): 2-17. doi: 10.1093/ecco-jcc/jjab178

    [4]

    韩啸, 傅智浩, 石磊, 等. 中医药治疗溃疡性结肠炎随机对照临床试验结局指标研究[J]. 中国中西医结合消化杂志, 2023, 31(4): 260-265, 273. doi: 10.3969/j.issn.1671-038X.2023.04.05

    [5]

    Hertati A, Hayashi S, Ogawa Y, et al. Interleukin-4 Receptor α Subunit Deficiency Alleviates Murine Intestinal Inflammation In Vivo Through the Enhancement of Intestinal Mucosal Barrier Function[J]. Front Pharmacol, 2020, 11: 573470. doi: 10.3389/fphar.2020.573470

    [6]

    Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 18(5): 309-324. doi: 10.1038/nri.2017.142

    [7]

    Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease[J]. Nat Immunol, 2019, 20(8): 970-979. doi: 10.1038/s41590-019-0415-0

    [8]

    Thanki KK, Johnson P, Higgins EJ, et al. Deletion of cystathionine-γ-lyase in bone marrow-derived cells promotes colitis-associated carcinogenesis[J]. Redox Biol, 2022, 55: 102417. doi: 10.1016/j.redox.2022.102417

    [9]

    Na SY, Kim YS. Management of inflammatory bowel disease beyond tumor necrosis factor inhibitors: novel biologics and small-molecule drugs[J]. Korean J Intern Med, 2022, 37(5): 906-919. doi: 10.3904/kjim.2022.152

    [10]

    沈洪, 张露, 朱磊. 经方治疗溃疡性结肠炎的临证思路与经验[J]. 中国中西医结合消化杂志, 2023, 31(4): 250-254. doi: 10.3969/j.issn.1671-038X.2023.04.03

    [11]

    沈洪, 朱磊, 邢敬. 溃疡性结肠炎癌变的中西医防治策略[J]. 中国中西医结合消化杂志, 2023, 31(3): 157-162. doi: 10.3969/j.issn.1671-038X.2023.03.01

    [12]

    王青, 苏聪平, 张惠敏, 等. 从炎性反应角度探讨清热解毒药的作用机制[J]. 中国中药杂志, 2018, 43(18): 3787-3794.

    [13]

    张佳乐, 许伟明, 张逸雯, 等. 近十年清热解毒类方剂干预冠心病临床研究疗效评价指标概况[J]. 世界科学技术-中医药现代化, 2021, 23(12): 4606-4612.

    [14]

    高阳, 顾思臻, 陈侃俊, 等. 窦丹波应用青玉散治疗溃疡性结肠炎的思考和临证体会[J]. 中华中医药杂志, 2021, 36(9): 5311-5315.

    [15]

    顾思臻, 薛艳, 张玉丽, 等. 溃结通干预轻中度活动期溃疡性结肠炎的临床疗效[J]. 中国实验方剂学杂志, 2021, 27(17): 106-111.

    [16]

    王依, 丁庞华, 谭祥, 等. 基于古今医案云平台系统分析李军祥教授治疗溃疡性结肠炎的用药规律[J]. 中国中西医结合消化杂志, 2021, 29(2): 81-85. doi: 10.3969/j.issn.1671-038X.2021.02.01

    [17]

    Fitzgerald KA, Kagan JC. Toll-like Receptors and the Control of Immunity[J]. Cell, 2020, 180(6): 1044-1066. doi: 10.1016/j.cell.2020.02.041

    [18]

    Xin J. Critical signaling pathways governing colitis-associated colorectal cancer: Signaling, therapeutic implications, and challenges[J]. Dig Liver Dis, 2023, 55(2): 169-177. doi: 10.1016/j.dld.2022.08.012

    [19]

    Mirzaei S, Saghari S, Bassiri F, et al. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition[J]. J Cell Physiol, 2022, 237(7): 2770-2795. doi: 10.1002/jcp.30759

    [20]

    Fu YJ, Xu B, Huang SW, et al. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14[J]. Acta Pharmacol Sin, 2021, 42(1): 88-96. doi: 10.1038/s41401-020-0411-9

    [21]

    Wang Y, Liu J, Huang Z, et al. Coptisine ameliorates DSS-induced ulcerative colitis via improving intestinal barrier dysfunction and suppressing inflammatory response[J]. Eur J Pharmacol, 2021, 896: 173912. doi: 10.1016/j.ejphar.2021.173912

    [22]

    Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier[J]. Front Immunol, 2021, 12: 767456. doi: 10.3389/fimmu.2021.767456

    [23]

    Yang QY, Ma LL, Zhang C, et al. Exploring the Mechanism of Indigo Naturalis in the Treatment of Ulcerative Colitis Based on TLR4/MyD88/NF-κB Signaling Pathway and Gut Microbiota[J]. Front Pharmacol, 2021, 12: 674416. doi: 10.3389/fphar.2021.674416

    [24]

    Burn GL, Foti A, Marsman G, et al. The Neutrophil[J]. Immunity, 2021, 54(7): 1377-1391. doi: 10.1016/j.immuni.2021.06.006

    [25]

    Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function[J]. Arch Biochem Biophys, 2018, 640: 47-52. doi: 10.1016/j.abb.2018.01.004

    [26]

    Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis[J]. J Crohns Colitis, 2019, 13(6): 772-784. doi: 10.1093/ecco-jcc/jjy215

    [27]

    Saravia J, Raynor JL, Chapman NM, et al. Signaling networks in immunometabolism[J]. Cell Res, 2020, 30(4): 328-342. doi: 10.1038/s41422-020-0301-1

    [28]

    Vanhaesebroeck B, Perry M, Brown JR, et al. Author Correction: PI3K inhibitors are finally coming of age[J]. Nat Rev Drug Discov, 2021, 20(10): 798.

    [29]

    Paskeh M, Entezari M, Mirzaei S, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling[J]. J Hematol Oncol, 2022, 15(1): 83. doi: 10.1186/s13045-022-01305-4

    [30]

    Zhu L, Shen H, Gu PQ, et al. Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation[J]. Exp Ther Med, 2020, 20(1): 581-590. doi: 10.3892/etm.2020.8718

    [31]

    Chen Q, Duan X, Fan H, et al. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway[J]. Int Immunopharmacol, 2017, 53: 149-157. doi: 10.1016/j.intimp.2017.10.025

    [32]

    杨显娟, 付尹, 王佳俊, 等. 黄连-厚朴配伍抑制PI3K/Akt信号通路改善TNBS诱导的大鼠溃疡性结肠炎研究[J]. 中草药, 2021, 52(15): 4587-4597. doi: 10.7501/j.issn.0253-2670.2021.15.017

    [33]

    Anjum J, Mitra S, Das R, et al. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics[J]. Pharmacol Res, 2022, 184: 106398. doi: 10.1016/j.phrs.2022.106398

    [34]

    Tam SY, Law HK. JNK in Tumor Microenvironment: Present Findings and Challenges in Clinical Translation[J]. Cancers(Basel), 2021, 13(9): 2196.

    [35]

    Pan X, Pei J, Wang A, et al. Development of small molecule extracellular signal-regulated kinases(ERKs)inhibitors for cancer therapy[J]. Acta Pharm Sin B, 2022, 12(5): 2171-2192. doi: 10.1016/j.apsb.2021.12.022

    [36]

    Jia L, Xue K, Liu J, et al. Anticolitic Effect of Berberine in Rat Experimental Model: Impact of PGE2/p38 MAPK Pathways[J]. Mediators Inflamm, 2020, 2020: 9419085.

    [37]

    Ma H, Zhou M, Duan W, et al. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway[J]. Int Immunopharmacol, 2020, 87: 106794. doi: 10.1016/j.intimp.2020.106794

    [38]

    李亚兰, 刘佳静, 马沛广, 等. 葛根芩连汤调控MMP-9/p38 MARK途径修复溃疡性结肠炎小鼠肠黏膜上皮屏障功能[J]. 中国实验方剂学杂志, 2021, 27(4): 8-15.

    [39]

    Patel M, Horgan PG, McMillan DC, et al. NF-κB pathways in the development and progression of colorectal cancer[J]. Transl Res, 2018, 197: 43-56. doi: 10.1016/j.trsl.2018.02.002

    [40]

    张培培, 杨欣, 梁国强, 等. 加味白头翁汤通过p38 MAPK-MLCK信号通路影响溃疡性结肠炎模型大鼠肠黏膜紧密连接蛋白[J]. 中国中药杂志, 2021, 46(21): 5719-5726.

    [41]

    Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018, 15(4): 234-248. doi: 10.1038/nrclinonc.2018.8

    [42]

    Zhang M, Zhou L, Xu Y, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis[J]. Nature, 2020, 586(7829): 434-439. doi: 10.1038/s41586-020-2799-2

    [43]

    Zhao Y, Luan H, Jiang H, et al. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling[J]. Phytomedicine, 2021, 84: 153519. doi: 10.1016/j.phymed.2021.153519

    [44]

    Lu Z, Xiong W, Xiao S, et al. Huanglian Jiedu Decoction ameliorates DSS-induced colitis in mice via the JAK2/STAT3 signalling pathway[J]. Chin Med, 2020, 15: 45. doi: 10.1186/s13020-020-00327-9

    [45]

    Piotrowska M, Swierczynski M, Fichna J, et al. The Nrf2 in the pathophysiology of the intestine: Molecular mechanisms and therapeutic implications for inflammatory bowel diseases[J]. Pharmacol Res, 2021, 163: 105243. doi: 10.1016/j.phrs.2020.105243

    [46]

    Wang X, Saud SM, Wang F, et al. Protective effect of ShaoYao decoction on colitis-associated colorectal cancer by inducing Nrf2 signaling pathway[J]. J Ethnopharmacol, 2020, 252: 112600. doi: 10.1016/j.jep.2020.112600

    [47]

    林川, 王菲, 王鸿卿, 等. 葛根芩连汤及配伍调控Nrf2/NQO1信号通路抑制溃疡性结肠炎大鼠氧化应激损伤[J]. 中国实验方剂学杂志, 2022, 28(13): 19-27.

    [48]

    Deason K, Troutman TD, Jain A, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation[J]. J Exp Med, 2018, 215(9): 2413-2428. doi: 10.1084/jem.20171810

    [49]

    Sharma BR, Kanneganti TD. Inflammasome signaling in colorectal cancer[J]. Transl Res, 2023, 252: 45-52. doi: 10.1016/j.trsl.2022.09.002

    [50]

    Qiao H, Huang Y, Chen X, et al. Jiaweishaoyao Decoction Alleviates DSS-Induced Ulcerative Colitis via Inhibiting Inflammation[J]. Gastroenterol Res Pract, 2020, 2020: 7182874.

    [51]

    Lv Q, Xing Y, Liu J, et al. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation[J]. Acta Pharm Sin B, 2021, 11(9): 2880-2899. doi: 10.1016/j.apsb.2021.03.011

    [52]

    吴娜, 万治平, 韩玲, 等. 黄芩汤对溃疡性结肠炎小鼠NLRP3/caspase-1细胞焦亡通路的影响[J]. 中国中药杂志, 2021, 46(5): 1191-1196.

  • 加载中
计量
  • 文章访问数:  1507
  • PDF下载数:  934
  • 施引文献:  0
出版历程
收稿日期:  2023-07-03
刊出日期:  2024-02-15

目录