从反流性食管炎到巴雷特食管:食管菌群扮演的角色

郭政, 唐艳萍, 李明莉, 等. 从反流性食管炎到巴雷特食管:食管菌群扮演的角色[J]. 中国中西医结合消化杂志, 2023, 31(10): 810-815. doi: 10.3969/j.issn.1671-038X.2023.10.16
引用本文: 郭政, 唐艳萍, 李明莉, 等. 从反流性食管炎到巴雷特食管:食管菌群扮演的角色[J]. 中国中西医结合消化杂志, 2023, 31(10): 810-815. doi: 10.3969/j.issn.1671-038X.2023.10.16
GUO Zheng, TANG Yanping, LI Mingli, et al. From reflux esophagitis to Barrett's esophagus: the role of esophageal microbiome[J]. Chin J Integr Tradit West Med Dig, 2023, 31(10): 810-815. doi: 10.3969/j.issn.1671-038X.2023.10.16
Citation: GUO Zheng, TANG Yanping, LI Mingli, et al. From reflux esophagitis to Barrett's esophagus: the role of esophageal microbiome[J]. Chin J Integr Tradit West Med Dig, 2023, 31(10): 810-815. doi: 10.3969/j.issn.1671-038X.2023.10.16

从反流性食管炎到巴雷特食管:食管菌群扮演的角色

  • 基金项目:
    国家自然科学基金(No:82274253、82204988、82074213)
详细信息
    通讯作者: 唐艳萍,E-mail:cb1699@sina.com

    Δ审校者

  • 中图分类号: R571

From reflux esophagitis to Barrett's esophagus: the role of esophageal microbiome

More Information
  • 反流性食管炎(reflux esophagitis,RE)在未经临床干预的情况下存在向巴雷特食管(Barrett's esophagus,BE)发展的风险,而BE将进一步发展成为食管腺癌(esophageal adenocacinoma,EAC)。食管菌群的改变可介导食管炎症,影响RE的进展,促进“RE-BE”转变的进程。识别食管菌群的改变将进一步促进人类对RE和BE发病机制及进展的理解。本文主要综述了食管菌群对RE和BE影响,以及饮食、吸烟、药物、益生菌、抗生素或中药等对食管微生物群的调节作用,为临床RE和BE的诊断及个性化治疗提供新思路。
  • 加载中
  • 表 1  不同研究对象的食管菌群结构

    作者 出版时间 研究方法 研究对象 食管菌群结构
    Dong等[30] 2018 16S rRNA 健康人 门水平:主要为变形菌门、厚壁菌门、拟杆菌门、放线菌门、梭菌门和TM7;
    属水平:以链球菌、奈瑟菌、普雷沃菌、放线菌和细孔菌的相对丰度较高。
    Yu等[37] 2019 16S rDNA 健康人 门水平:厚壁菌门36.9%、放线菌门34.6%、拟杆菌门16.5%、变形菌门10.6%;
    属水平:双歧杆菌属32.5%、拟杆菌属7.0%、克雷伯菌属6.9%、链球菌属2.8%。
    Liu等[31] 2013 16S rDNA RE患者 门水平:主要为变形菌门43%、厚壁菌门33%、拟杆菌门10%、梭菌门10%;
    属水平:链球菌20%、巴氏杆菌10%、克雷伯菌9%、梭杆菌9%、嗜血杆菌9%、普雷沃菌5%。
    Yu等[37] 2019 16S rDNA RE患者 轻度RE:门水平:厚壁菌门36.6%、放线菌门38.4%、拟杆菌门13.2%、变形菌门10.8%;属水平:双歧杆菌属32.3%,拟杆菌属6.3%,克雷伯菌属7.0%,链球菌属2.7%。
    重度RE:门水平:厚壁菌门38.0%、放线菌门34.2%、拟杆菌门13.7%、变形菌门12.0%;属水平:双歧杆菌属31.5%,拟杆菌属6.8%,克雷伯菌属7.5%,链球菌属2.8%。
    Amir等[22] 2014 16S rRNA BE患者 发现胃液中肠杆菌科(主要是大肠杆菌属)与食管异常有关,可能通过反流进入食管。
    Liu等[31] 2013 16S rDNA BE患者 门水平:厚壁菌门55%、变形菌门20%、拟杆菌门14%、梭菌门9%、放线菌门2%;
    属水平:细孔菌19%、普雷沃菌12%、链球菌11%、梭杆菌9%、双歧杆菌4%、幽门螺杆菌4%、奈瑟菌4%、放线菌4%、乳酸杆菌4%、透析菌3%和无色杆菌3%。
    Blackett等[33] 2013 共培养实验 BE患者 BE患者较健康人的食管菌群弯曲杆菌增多。
    Zaidi等[34] 2016 PCR-ESI-MS-TOF BE患者 食管菌群中大肠杆菌丰度较健康人及RE患者食管菌群高。
    Okereke等[35] 2019 16S rDNA BE患者 嗜血杆菌在BE食管黏膜中富集。
    Gall等[36] 2015 16S rRNA BE患者 BE危险因素与链球菌属和普雷沃菌属比例呈负相关。
    高峰等[38] 2021 16S rDNA RE大鼠 有益菌减少;消化链球菌属(1.7±0.7)%,螺杆菌属(1.0±0.5)%,苏黎世杆菌属(0.5±0.2)%。
    贾梦真等[39] 2019 16S rDNA RE大鼠 消化链球菌属增多,螺杆菌属、乳球菌属减少。
    下载: 导出CSV
  • [1]

    Nardone G, Compare D, Rocco A. A microbiota-centric view of diseases of the upper gastrointestinal tract[J]. Lancet Gastroenterol Hepatol, 2017, 2(4): 298-312. doi: 10.1016/S2468-1253(16)30108-X

    [2]

    D'Souza SM, Houston K, Keenan L, et al. Role of microbial dysbiosis in the pathogenesis of esophageal mucosal disease: A paradigm shift from acid to bacteria?[J]. World J Gastroenterol, 2021, 27(18): 2054-2072. doi: 10.3748/wjg.v27.i18.2054

    [3]

    刘思雨, 唐艳萍. 细胞程序性死亡在反流性食管炎发病机制中作用的研究进展[J]. 国际消化病杂志, 2022, 42(4): 218-221. doi: 10.3969/j.issn.1673-534X.2022.04.004

    [4]

    李鹏, 王拥军, 陈光勇, 等. 中国巴雷特食管及其早期腺癌筛查与诊治共识(2017万宁)[J]. 中国实用内科杂志, 2017, 37(9): 798-809. doi: 10.19538/j.nk2017090106

    [5]

    Eusebi LH, Telese A, Cirota GG, et al. Effect of gastro-esophageal reflux symptoms on the risk of Barrett's esophagus: A systematic review and meta-analysis[J]. J Gastroenterol Hepatol, 2022, 37(8): 1507-1516. doi: 10.1111/jgh.15902

    [6]

    Cook MB, Coburn SB, Lam JR, et al. Cancer incidence and mortality risks in a large US Barrett's oesophagus cohort[J]. Gut, 2018, 67(3): 418-529. doi: 10.1136/gutjnl-2016-312223

    [7]

    Desai TK, Krishnan K, Samala N, et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett's oesophagus: a meta-analysis[J]. Gut, 2012, 61(7): 970-976. doi: 10.1136/gutjnl-2011-300730

    [8]

    Okereke I, Hamilton C, Wenholz A, et al. Associations of the microbiome and esophageal disease[J]. J Thorac Dis, 2019, 11(Suppl 12): S1588-S1593.

    [9]

    Hunt RH, Yaghoobi M. The Esophageal and Gastric Microbiome in Health and Disease[J]. Gastroenterol Clin North Am, 2017, 46(1): 121-141. doi: 10.1016/j.gtc.2016.09.009

    [10]

    Deshpande NP, Riordan SM, Castaño-Rodríguez N, et al. Signatures within the esophageal microbiome are associated with host genetics, age, and disease[J]. Microbiome, 2018, 6(1): 227. doi: 10.1186/s40168-018-0611-4

    [11]

    Abnet CC, Arnold M, Wei WQ. Epidemiology of Esophageal Squamous Cell Carcinoma[J]. Gastroenterology, 2018, 154(2): 360-373. doi: 10.1053/j.gastro.2017.08.023

    [12]

    Nobel YR, Snider EJ, Compres G, et al. Increasing Dietary Fiber Intake Is Associated with a Distinct Esophageal Microbiome[J]. Clin Transl Gastroenterol, 2018, 9(10): 199. doi: 10.1038/s41424-018-0067-7

    [13]

    Dvorak K, Chavarria M, Payne CM, et al. Activation of the interleukin-6/STAT3 antiapoptotic pathway in esophageal cells by bile acids and low pH: relevance to barrett's esophagus[J]. Clin Cancer Res, 2007, 13(18 Pt 1): 5305-5313.

    [14]

    DeMarini DM. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review[J]. Mutat Res, 2004, 567(2-3): 447-474. doi: 10.1016/j.mrrev.2004.02.001

    [15]

    Brook I, Gober AE. Recovery of potential pathogens and interfering bacteria in the nasopharynx of smokers and nonsmokers[J]. Chest, 2005, 127(6): 2072-2075. doi: 10.1378/chest.127.6.2072

    [16]

    Brook I, Gober AE. Recovery of potential pathogens in the nasopharynx of healthy and otitis media-prone children and their smoking and nonsmoking parents[J]. Ann Otol Rhinol Laryngol, 2008, 117(10): 727-730. doi: 10.1177/000348940811701003

    [17]

    Shiloah J, Patters MR, Waring MB. The prevalence of pathogenic periodontal microflora in healthy young adult smokers[J]. J Periodontol, 2000, 71(4): 562-567. doi: 10.1902/jop.2000.71.4.562

    [18]

    Vogtmann E, Flores R, Yu G, et al. Association between tobacco use and the upper gastrointestinal microbiome among Chinese men[J]. Cancer Causes Control, 2015, 26(4): 581-588. doi: 10.1007/s10552-015-0535-2

    [19]

    Wang X, Ye P, Fang L, et al. Active Smoking Induces Aberrations in Digestive Tract Microbiota of Rats[J]. Front Cell Infect Microbiol, 2021, 11: 737204. doi: 10.3389/fcimb.2021.737204

    [20]

    Boursi B, Mamtani R, Haynes K, et al. Recurrent antibiotic exposure may promote cancer formation--Another step in understanding the role of the human microbiota?[J]. Eur J Cancer, 2015, 51(17): 2655-2664. doi: 10.1016/j.ejca.2015.08.015

    [21]

    Neto AG, Whitaker A, Pei Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma[J]. Semin Oncol, 2016, 43(1): 86-96. doi: 10.1053/j.seminoncol.2015.09.005

    [22]

    Amir I, Konikoff FM, Oppenheim M, et al. Gastric microbiota is altered in oesophagitis and Barrett's oesophagus and further modified by proton pump inhibitors[J]. Environ Microbiol, 2014, 16(9): 2905-2914. doi: 10.1111/1462-2920.12285

    [23]

    Kohata Y, Nakahara K, Tanigawa T, et al. Rebamipide Alters the Esophageal Microbiome and Reduces the Incidence of Barrett's Esophagus in a Rat Model[J]. Dig Dis Sci, 2015, 60(9): 2654-2661. doi: 10.1007/s10620-015-3662-4

    [24]

    Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota[J]. J Clin Invest, 2015, 125(3): 926-938. doi: 10.1172/JCI76304

    [25]

    Su T, Lai S, Lee A, et al. Meta-analysis: proton pump inhibitors moderately increase the risk of small intestinal bacterial overgrowth[J]. J Gastroenterol, 2018, 53(1): 27-36. doi: 10.1007/s00535-017-1371-9

    [26]

    Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals[J]. mBio, 2015, 6(2): e00037.

    [27]

    Mannell A, Plant M, Frolich J. The microflora of the oesophagus[J]. Ann R Coll Surg Engl, 1983, 65(3): 152-154.

    [28]

    Pei Z, Bini EJ, Yang L, et al. Bacterial biota in the human distal esophagus[J]. Proc Natl Acad Sci U S A, 2004, 101(12): 4250-4255. doi: 10.1073/pnas.0306398101

    [29]

    Yang L, Lu X, Nossa CW, et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome[J]. Gastroenterology, 2009, 137(2): 588-597. doi: 10.1053/j.gastro.2009.04.046

    [30]

    Dong L, Yin J, Zhao J, et al. Microbial Similarity and Preference for Specific Sites in Healthy Oral Cavity and Esophagus[J]. Front Microbiol, 2018, 9: 1603. doi: 10.3389/fmicb.2018.01603

    [31]

    Liu N, Ando T, Ishiguro K, et al. Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett's esophagus[J]. BMC Infect Dis, 2013, 13: 130. doi: 10.1186/1471-2334-13-130

    [32]

    Deshpande NP, Riordan SM, Gorman CJ, et al. Multi-omics of the esophageal microenvironment identifies signatures associated with progression of Barrett's esophagus[J]. Genome Med, 2021, 13(1): 133. doi: 10.1186/s13073-021-00951-6

    [33]

    Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett's and oesophageal carcinoma: association or causality?[J]. Aliment Pharmacol Ther, 2013, 37(11): 1084-1092. doi: 10.1111/apt.12317

    [34]

    Zaidi AH, Kelly LA, Kreft RE, et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma[J]. BMC Cancer, 2016, 16: 52. doi: 10.1186/s12885-016-2093-8

    [35]

    Okereke I, Hamilton C, Reep G, et al. Microflora composition in the gastrointestinal tract in patients with Barrett's esophagus[J]. J Thorac Dis, 2019, 11(Suppl 12): S1581-S1587.

    [36]

    Gall A, Fero J, McCoy C, et al. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort[J]. PLoS One, 2015, 10(6): e0129055. doi: 10.1371/journal.pone.0129055

    [37]

    Yu Y, Gao F, Chen X, et al. Changes in the distal esophageal microbiota in Chinese patients with reflux esophagitis[J]. J Dig Dis, 2019, 20(1): 18-24. doi: 10.1111/1751-2980.12692

    [38]

    高峰, 贾梦真, 孙玥. 奥美拉唑治疗对反流性食管炎模型大鼠食管菌群构成的影响[J]. 基础医学与临床, 2021, 41(3): 370-375. doi: 10.3969/j.issn.1001-6325.2021.03.010

    [39]

    贾梦真, 高峰, 孙玥, 等. 香连片治疗反流性食管炎大鼠后食管黏膜菌群构成变化研究[J]. 中国医药, 2019, 14(12): 1842-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYG201912020.htm

    [40]

    Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer[J]. Nature, 2004, 431(7007): 461-466. doi: 10.1038/nature02924

    [41]

    Tsukamoto H, Takeuchi S, Kubota K, et al. Lipopolysaccharide(LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKK-IRF3 axis activation[J]. J Biol Chem, 2018, 293(26): 10186-10201. doi: 10.1074/jbc.M117.796631

    [42]

    Barona I, Fagundes DS, Gonzalo S, et al. Role of TLR4 and MAPK in the local effect of LPS on intestinal contractility[J]. J Pharm Pharmacol, 2011, 63(5): 657-662. doi: 10.1111/j.2042-7158.2011.01253.x

    [43]

    Nadatani Y, Huo X, Zhang X, et al. NOD-Like Receptor Protein 3 Inflammasome Priming and Activation in Barrett's Epithelial Cells[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4): 439-453. doi: 10.1016/j.jcmgh.2016.03.006

    [44]

    Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface[J]. Nat Rev Cancer, 2004, 4(1): 45-60. doi: 10.1038/nrc1251

    [45]

    Dohrman A, Miyata S, Gallup M, et al. Mucin gene(MUC 2 and MUC 5AC)upregulation by Gram-positive and Gram-negative bacteria[J]. Biochim Biophys Acta, 1998, 1406(3): 251-259. doi: 10.1016/S0925-4439(98)00010-6

    [46]

    Glickman JN, Blount PL, Sanchez CA, et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett's esophagus[J]. Hum Pathol, 2006, 37(10): 1304-1315. doi: 10.1016/j.humpath.2006.03.023

    [47]

    Xie C, Wang J, Li Y, et al. Esophagogastric Junction Contractility Integral Reflect the Anti-reflux Barrier Dysfunction in Patients with Gastroesophageal Reflux Disease[J]. J Neurogastroenterol Motil, 2017, 23(1): 27-33. doi: 10.5056/jnm16008

    [48]

    Peter S, Pendergraft A, VanDerPol W, et al. Mucosa-Associated Microbiota in Barrett's Esophagus, Dysplasia, and Esophageal Adenocarcinoma Differ Similarly Compared With Healthy Controls[J]. Clin Transl Gastroenterol, 2020, 11(8): e00199. doi: 10.14309/ctg.0000000000000199

    [49]

    Lee SJ, Park H, Chang JH, et al. Generation of nitric oxide in the opossum lower esophageal sphincter during physiological experimentation[J]. Yonsei Med J, 2006, 47(2): 223-229. doi: 10.3349/ymj.2006.47.2.223

    [50]

    Priego-Ranero Á, Opdenakker G, Uribe-Uribe N, et al. Autoantigen characterization in the lower esophageal sphincter muscle of patients with achalasia[J]. Neurogastroenterol Motil, 2022, 34(9): e14348. doi: 10.1111/nmo.14348

    [51]

    Wong MW, Liu TT, Yi CH, et al. Oesophageal hypervigilance and visceral anxiety relate to reflux symptom severity and psychological distress but not to acid reflux parameters[J]. Aliment Pharmacol Ther, 2021, 54(7): 923-930. doi: 10.1111/apt.16561

    [52]

    Kim JJ, Kim N, Choi YJ, et al. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms[J]. Medicine(Baltimore), 2016, 95(32): e4387.

    [53]

    Winkelsett L, Malfertheiner P, Wex T, et al. Mucosal Two-Step Pathogenesis in Gastroesophageal Reflux Disease: Repeated Weakly Acidic Stimulation and Activation of Protease-Activated Receptor-2 on Mucosal Interleukin-8 Secretion[J]. Digestion, 2018, 98(1): 19-25. doi: 10.1159/000486480

    [54]

    Wu L, Oshima T, Shan J, et al. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(8): G695-G702. doi: 10.1152/ajpgi.00162.2015

    [55]

    Ma J, Altomare A, Guarino M, et al. HCl-induced and ATP-dependent upregulation of TRPV1 receptor expression and cytokine production by human esophageal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(5): G635-G645. doi: 10.1152/ajpgi.00097.2012

    [56]

    Snider EJ, Compres G, Freedberg DE, et al. Barrett's esophagus is associated with a distinct oral microbiome[J]. Clin Transl Gastroenterol, 2018, 9(3): 135. doi: 10.1038/s41424-018-0005-8

    [57]

    Sun QH, Wang HY, Sun SD, et al. Beneficial effect of probiotics supplements in reflux esophagitis treated with esomeprazole: A randomized controlled trial[J]. World J Gastroenterol, 2019, 25(17): 2110-2121. doi: 10.3748/wjg.v25.i17.2110

    [58]

    Beckett JM, Singh NK, Phillips J, et al. Anti-Heartburn Effects of Sugar Cane Flour: A Double-Blind, Randomized, Placebo-Controlled Study[J]. Nutrients, 2020, 12(6).

    [59]

    Rao S, Bhagatwala J. Small Intestinal Bacterial Overgrowth: Clinical Features and Therapeutic Management[J]. Clin Transl Gastroenterol, 2019, 10(10): e00078. doi: 10.14309/ctg.0000000000000078

    [60]

    Tian Z, Yang Z, Gao J, et al. Lower esophageal microbiota species are affected by the eradication of Helicobacter pylori infection using antibiotics[J]. Exp Ther Med, 2015, 9(3): 685-692. doi: 10.3892/etm.2015.2169

    [61]

    Sawada A, Fujiwara Y, Nagami Y, et al. Alteration of Esophageal Microbiome by Antibiotic Treatment Does Not Affect Incidence of Rat Esophageal Adenocarcinoma[J]. Dig Dis Sci, 2016, 61(11): 3161-3168. doi: 10.1007/s10620-016-4263-6

    [62]

    宋庆增, 谢胜, 黎丽群. 4种经方对比质子泵抑制剂治疗反流性食管炎疗效的网状Meta分析[J]. 时珍国医国药, 2020, 31(1): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202001083.htm

    [63]

    郭震浪, 苏振宁, 王正飞, 等. 半夏泻心汤加减治疗反流性食管炎疗效的Meta分析[J]. 中国实验方剂学杂志, 2015, 21(24): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201524054.htm

    [64]

    黄雨晴, 周易, 黄鹤, 等. 清郁和降汤对反流性食管炎模型大鼠食管组织LPS/TLR4/NF-κB通路及食管黏膜屏障的影响[J]. 中医杂志, 2022, 63(22): 2170-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ202222014.htm

    [65]

    Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. doi: 10.1016/j.chom.2013.07.012

  • 加载中

(1)

计量
  • 文章访问数:  1358
  • PDF下载数:  571
  • 施引文献:  0
出版历程
收稿日期:  2023-03-26
刊出日期:  2023-10-15

目录