-
摘要: 反流性食管炎(reflux esophagitis,RE)在未经临床干预的情况下存在向巴雷特食管(Barrett's esophagus,BE)发展的风险,而BE将进一步发展成为食管腺癌(esophageal adenocacinoma,EAC)。食管菌群的改变可介导食管炎症,影响RE的进展,促进“RE-BE”转变的进程。识别食管菌群的改变将进一步促进人类对RE和BE发病机制及进展的理解。本文主要综述了食管菌群对RE和BE影响,以及饮食、吸烟、药物、益生菌、抗生素或中药等对食管微生物群的调节作用,为临床RE和BE的诊断及个性化治疗提供新思路。Abstract: Reflux esophagitis (RE) is at risk of progressing to Barrett's esophagus (BE) without clinical intervention, which will further develop into esophageal adenocarcinoma (EAC).The esophageal microbiome is one of the hotspots in the research of esophageal diseases.It has been shown that the alteration of the esophageal microbiome can mediate esophageal inflammation and influence the progression of reflux esophagitis, promoting disease progression between RE-BE.Identifying the changes in esophageal flora will further promote our understanding of the pathogenesis and disease progression of RE and BE.This article mainly reviews the influence of esophageal flora on RE and BE, as well as the regulatory effect of diet, smoking, drugs, probiotics, synbiotics, antibiotics, or Traditional Chinese Medicine on esophageal flora, to provide new ideas for clinical diagnosis of RE and BE diseases and personalized treatment.
-
Key words:
- reflux esophagitis /
- Barrett's esophagus /
- esophageal microbiome
-
-
表 1 不同研究对象的食管菌群结构
作者 出版时间 研究方法 研究对象 食管菌群结构 Dong等[30] 2018 16S rRNA 健康人 门水平:主要为变形菌门、厚壁菌门、拟杆菌门、放线菌门、梭菌门和TM7;
属水平:以链球菌、奈瑟菌、普雷沃菌、放线菌和细孔菌的相对丰度较高。Yu等[37] 2019 16S rDNA 健康人 门水平:厚壁菌门36.9%、放线菌门34.6%、拟杆菌门16.5%、变形菌门10.6%;
属水平:双歧杆菌属32.5%、拟杆菌属7.0%、克雷伯菌属6.9%、链球菌属2.8%。Liu等[31] 2013 16S rDNA RE患者 门水平:主要为变形菌门43%、厚壁菌门33%、拟杆菌门10%、梭菌门10%;
属水平:链球菌20%、巴氏杆菌10%、克雷伯菌9%、梭杆菌9%、嗜血杆菌9%、普雷沃菌5%。Yu等[37] 2019 16S rDNA RE患者 轻度RE:门水平:厚壁菌门36.6%、放线菌门38.4%、拟杆菌门13.2%、变形菌门10.8%;属水平:双歧杆菌属32.3%,拟杆菌属6.3%,克雷伯菌属7.0%,链球菌属2.7%。
重度RE:门水平:厚壁菌门38.0%、放线菌门34.2%、拟杆菌门13.7%、变形菌门12.0%;属水平:双歧杆菌属31.5%,拟杆菌属6.8%,克雷伯菌属7.5%,链球菌属2.8%。Amir等[22] 2014 16S rRNA BE患者 发现胃液中肠杆菌科(主要是大肠杆菌属)与食管异常有关,可能通过反流进入食管。 Liu等[31] 2013 16S rDNA BE患者 门水平:厚壁菌门55%、变形菌门20%、拟杆菌门14%、梭菌门9%、放线菌门2%;
属水平:细孔菌19%、普雷沃菌12%、链球菌11%、梭杆菌9%、双歧杆菌4%、幽门螺杆菌4%、奈瑟菌4%、放线菌4%、乳酸杆菌4%、透析菌3%和无色杆菌3%。Blackett等[33] 2013 共培养实验 BE患者 BE患者较健康人的食管菌群弯曲杆菌增多。 Zaidi等[34] 2016 PCR-ESI-MS-TOF BE患者 食管菌群中大肠杆菌丰度较健康人及RE患者食管菌群高。 Okereke等[35] 2019 16S rDNA BE患者 嗜血杆菌在BE食管黏膜中富集。 Gall等[36] 2015 16S rRNA BE患者 BE危险因素与链球菌属和普雷沃菌属比例呈负相关。 高峰等[38] 2021 16S rDNA RE大鼠 有益菌减少;消化链球菌属(1.7±0.7)%,螺杆菌属(1.0±0.5)%,苏黎世杆菌属(0.5±0.2)%。 贾梦真等[39] 2019 16S rDNA RE大鼠 消化链球菌属增多,螺杆菌属、乳球菌属减少。 -
[1] Nardone G, Compare D, Rocco A. A microbiota-centric view of diseases of the upper gastrointestinal tract[J]. Lancet Gastroenterol Hepatol, 2017, 2(4): 298-312. doi: 10.1016/S2468-1253(16)30108-X
[2] D'Souza SM, Houston K, Keenan L, et al. Role of microbial dysbiosis in the pathogenesis of esophageal mucosal disease: A paradigm shift from acid to bacteria?[J]. World J Gastroenterol, 2021, 27(18): 2054-2072. doi: 10.3748/wjg.v27.i18.2054
[3] 刘思雨, 唐艳萍. 细胞程序性死亡在反流性食管炎发病机制中作用的研究进展[J]. 国际消化病杂志, 2022, 42(4): 218-221. doi: 10.3969/j.issn.1673-534X.2022.04.004
[4] 李鹏, 王拥军, 陈光勇, 等. 中国巴雷特食管及其早期腺癌筛查与诊治共识(2017万宁)[J]. 中国实用内科杂志, 2017, 37(9): 798-809. doi: 10.19538/j.nk2017090106
[5] Eusebi LH, Telese A, Cirota GG, et al. Effect of gastro-esophageal reflux symptoms on the risk of Barrett's esophagus: A systematic review and meta-analysis[J]. J Gastroenterol Hepatol, 2022, 37(8): 1507-1516. doi: 10.1111/jgh.15902
[6] Cook MB, Coburn SB, Lam JR, et al. Cancer incidence and mortality risks in a large US Barrett's oesophagus cohort[J]. Gut, 2018, 67(3): 418-529. doi: 10.1136/gutjnl-2016-312223
[7] Desai TK, Krishnan K, Samala N, et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett's oesophagus: a meta-analysis[J]. Gut, 2012, 61(7): 970-976. doi: 10.1136/gutjnl-2011-300730
[8] Okereke I, Hamilton C, Wenholz A, et al. Associations of the microbiome and esophageal disease[J]. J Thorac Dis, 2019, 11(Suppl 12): S1588-S1593.
[9] Hunt RH, Yaghoobi M. The Esophageal and Gastric Microbiome in Health and Disease[J]. Gastroenterol Clin North Am, 2017, 46(1): 121-141. doi: 10.1016/j.gtc.2016.09.009
[10] Deshpande NP, Riordan SM, Castaño-Rodríguez N, et al. Signatures within the esophageal microbiome are associated with host genetics, age, and disease[J]. Microbiome, 2018, 6(1): 227. doi: 10.1186/s40168-018-0611-4
[11] Abnet CC, Arnold M, Wei WQ. Epidemiology of Esophageal Squamous Cell Carcinoma[J]. Gastroenterology, 2018, 154(2): 360-373. doi: 10.1053/j.gastro.2017.08.023
[12] Nobel YR, Snider EJ, Compres G, et al. Increasing Dietary Fiber Intake Is Associated with a Distinct Esophageal Microbiome[J]. Clin Transl Gastroenterol, 2018, 9(10): 199. doi: 10.1038/s41424-018-0067-7
[13] Dvorak K, Chavarria M, Payne CM, et al. Activation of the interleukin-6/STAT3 antiapoptotic pathway in esophageal cells by bile acids and low pH: relevance to barrett's esophagus[J]. Clin Cancer Res, 2007, 13(18 Pt 1): 5305-5313.
[14] DeMarini DM. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review[J]. Mutat Res, 2004, 567(2-3): 447-474. doi: 10.1016/j.mrrev.2004.02.001
[15] Brook I, Gober AE. Recovery of potential pathogens and interfering bacteria in the nasopharynx of smokers and nonsmokers[J]. Chest, 2005, 127(6): 2072-2075. doi: 10.1378/chest.127.6.2072
[16] Brook I, Gober AE. Recovery of potential pathogens in the nasopharynx of healthy and otitis media-prone children and their smoking and nonsmoking parents[J]. Ann Otol Rhinol Laryngol, 2008, 117(10): 727-730. doi: 10.1177/000348940811701003
[17] Shiloah J, Patters MR, Waring MB. The prevalence of pathogenic periodontal microflora in healthy young adult smokers[J]. J Periodontol, 2000, 71(4): 562-567. doi: 10.1902/jop.2000.71.4.562
[18] Vogtmann E, Flores R, Yu G, et al. Association between tobacco use and the upper gastrointestinal microbiome among Chinese men[J]. Cancer Causes Control, 2015, 26(4): 581-588. doi: 10.1007/s10552-015-0535-2
[19] Wang X, Ye P, Fang L, et al. Active Smoking Induces Aberrations in Digestive Tract Microbiota of Rats[J]. Front Cell Infect Microbiol, 2021, 11: 737204. doi: 10.3389/fcimb.2021.737204
[20] Boursi B, Mamtani R, Haynes K, et al. Recurrent antibiotic exposure may promote cancer formation--Another step in understanding the role of the human microbiota?[J]. Eur J Cancer, 2015, 51(17): 2655-2664. doi: 10.1016/j.ejca.2015.08.015
[21] Neto AG, Whitaker A, Pei Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma[J]. Semin Oncol, 2016, 43(1): 86-96. doi: 10.1053/j.seminoncol.2015.09.005
[22] Amir I, Konikoff FM, Oppenheim M, et al. Gastric microbiota is altered in oesophagitis and Barrett's oesophagus and further modified by proton pump inhibitors[J]. Environ Microbiol, 2014, 16(9): 2905-2914. doi: 10.1111/1462-2920.12285
[23] Kohata Y, Nakahara K, Tanigawa T, et al. Rebamipide Alters the Esophageal Microbiome and Reduces the Incidence of Barrett's Esophagus in a Rat Model[J]. Dig Dis Sci, 2015, 60(9): 2654-2661. doi: 10.1007/s10620-015-3662-4
[24] Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota[J]. J Clin Invest, 2015, 125(3): 926-938. doi: 10.1172/JCI76304
[25] Su T, Lai S, Lee A, et al. Meta-analysis: proton pump inhibitors moderately increase the risk of small intestinal bacterial overgrowth[J]. J Gastroenterol, 2018, 53(1): 27-36. doi: 10.1007/s00535-017-1371-9
[26] Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals[J]. mBio, 2015, 6(2): e00037.
[27] Mannell A, Plant M, Frolich J. The microflora of the oesophagus[J]. Ann R Coll Surg Engl, 1983, 65(3): 152-154.
[28] Pei Z, Bini EJ, Yang L, et al. Bacterial biota in the human distal esophagus[J]. Proc Natl Acad Sci U S A, 2004, 101(12): 4250-4255. doi: 10.1073/pnas.0306398101
[29] Yang L, Lu X, Nossa CW, et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome[J]. Gastroenterology, 2009, 137(2): 588-597. doi: 10.1053/j.gastro.2009.04.046
[30] Dong L, Yin J, Zhao J, et al. Microbial Similarity and Preference for Specific Sites in Healthy Oral Cavity and Esophagus[J]. Front Microbiol, 2018, 9: 1603. doi: 10.3389/fmicb.2018.01603
[31] Liu N, Ando T, Ishiguro K, et al. Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett's esophagus[J]. BMC Infect Dis, 2013, 13: 130. doi: 10.1186/1471-2334-13-130
[32] Deshpande NP, Riordan SM, Gorman CJ, et al. Multi-omics of the esophageal microenvironment identifies signatures associated with progression of Barrett's esophagus[J]. Genome Med, 2021, 13(1): 133. doi: 10.1186/s13073-021-00951-6
[33] Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett's and oesophageal carcinoma: association or causality?[J]. Aliment Pharmacol Ther, 2013, 37(11): 1084-1092. doi: 10.1111/apt.12317
[34] Zaidi AH, Kelly LA, Kreft RE, et al. Associations of microbiota and toll-like receptor signaling pathway in esophageal adenocarcinoma[J]. BMC Cancer, 2016, 16: 52. doi: 10.1186/s12885-016-2093-8
[35] Okereke I, Hamilton C, Reep G, et al. Microflora composition in the gastrointestinal tract in patients with Barrett's esophagus[J]. J Thorac Dis, 2019, 11(Suppl 12): S1581-S1587.
[36] Gall A, Fero J, McCoy C, et al. Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort[J]. PLoS One, 2015, 10(6): e0129055. doi: 10.1371/journal.pone.0129055
[37] Yu Y, Gao F, Chen X, et al. Changes in the distal esophageal microbiota in Chinese patients with reflux esophagitis[J]. J Dig Dis, 2019, 20(1): 18-24. doi: 10.1111/1751-2980.12692
[38] 高峰, 贾梦真, 孙玥. 奥美拉唑治疗对反流性食管炎模型大鼠食管菌群构成的影响[J]. 基础医学与临床, 2021, 41(3): 370-375. doi: 10.3969/j.issn.1001-6325.2021.03.010
[39] 贾梦真, 高峰, 孙玥, 等. 香连片治疗反流性食管炎大鼠后食管黏膜菌群构成变化研究[J]. 中国医药, 2019, 14(12): 1842-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYG201912020.htm
[40] Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer[J]. Nature, 2004, 431(7007): 461-466. doi: 10.1038/nature02924
[41] Tsukamoto H, Takeuchi S, Kubota K, et al. Lipopolysaccharide(LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKK-IRF3 axis activation[J]. J Biol Chem, 2018, 293(26): 10186-10201. doi: 10.1074/jbc.M117.796631
[42] Barona I, Fagundes DS, Gonzalo S, et al. Role of TLR4 and MAPK in the local effect of LPS on intestinal contractility[J]. J Pharm Pharmacol, 2011, 63(5): 657-662. doi: 10.1111/j.2042-7158.2011.01253.x
[43] Nadatani Y, Huo X, Zhang X, et al. NOD-Like Receptor Protein 3 Inflammasome Priming and Activation in Barrett's Epithelial Cells[J]. Cell Mol Gastroenterol Hepatol, 2016, 2(4): 439-453. doi: 10.1016/j.jcmgh.2016.03.006
[44] Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface[J]. Nat Rev Cancer, 2004, 4(1): 45-60. doi: 10.1038/nrc1251
[45] Dohrman A, Miyata S, Gallup M, et al. Mucin gene(MUC 2 and MUC 5AC)upregulation by Gram-positive and Gram-negative bacteria[J]. Biochim Biophys Acta, 1998, 1406(3): 251-259. doi: 10.1016/S0925-4439(98)00010-6
[46] Glickman JN, Blount PL, Sanchez CA, et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett's esophagus[J]. Hum Pathol, 2006, 37(10): 1304-1315. doi: 10.1016/j.humpath.2006.03.023
[47] Xie C, Wang J, Li Y, et al. Esophagogastric Junction Contractility Integral Reflect the Anti-reflux Barrier Dysfunction in Patients with Gastroesophageal Reflux Disease[J]. J Neurogastroenterol Motil, 2017, 23(1): 27-33. doi: 10.5056/jnm16008
[48] Peter S, Pendergraft A, VanDerPol W, et al. Mucosa-Associated Microbiota in Barrett's Esophagus, Dysplasia, and Esophageal Adenocarcinoma Differ Similarly Compared With Healthy Controls[J]. Clin Transl Gastroenterol, 2020, 11(8): e00199. doi: 10.14309/ctg.0000000000000199
[49] Lee SJ, Park H, Chang JH, et al. Generation of nitric oxide in the opossum lower esophageal sphincter during physiological experimentation[J]. Yonsei Med J, 2006, 47(2): 223-229. doi: 10.3349/ymj.2006.47.2.223
[50] Priego-Ranero Á, Opdenakker G, Uribe-Uribe N, et al. Autoantigen characterization in the lower esophageal sphincter muscle of patients with achalasia[J]. Neurogastroenterol Motil, 2022, 34(9): e14348. doi: 10.1111/nmo.14348
[51] Wong MW, Liu TT, Yi CH, et al. Oesophageal hypervigilance and visceral anxiety relate to reflux symptom severity and psychological distress but not to acid reflux parameters[J]. Aliment Pharmacol Ther, 2021, 54(7): 923-930. doi: 10.1111/apt.16561
[52] Kim JJ, Kim N, Choi YJ, et al. Increased TRPV1 and PAR2 mRNA expression levels are associated only with the esophageal reflux symptoms, but not with the extraesophageal reflux symptoms[J]. Medicine(Baltimore), 2016, 95(32): e4387.
[53] Winkelsett L, Malfertheiner P, Wex T, et al. Mucosal Two-Step Pathogenesis in Gastroesophageal Reflux Disease: Repeated Weakly Acidic Stimulation and Activation of Protease-Activated Receptor-2 on Mucosal Interleukin-8 Secretion[J]. Digestion, 2018, 98(1): 19-25. doi: 10.1159/000486480
[54] Wu L, Oshima T, Shan J, et al. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(8): G695-G702. doi: 10.1152/ajpgi.00162.2015
[55] Ma J, Altomare A, Guarino M, et al. HCl-induced and ATP-dependent upregulation of TRPV1 receptor expression and cytokine production by human esophageal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(5): G635-G645. doi: 10.1152/ajpgi.00097.2012
[56] Snider EJ, Compres G, Freedberg DE, et al. Barrett's esophagus is associated with a distinct oral microbiome[J]. Clin Transl Gastroenterol, 2018, 9(3): 135. doi: 10.1038/s41424-018-0005-8
[57] Sun QH, Wang HY, Sun SD, et al. Beneficial effect of probiotics supplements in reflux esophagitis treated with esomeprazole: A randomized controlled trial[J]. World J Gastroenterol, 2019, 25(17): 2110-2121. doi: 10.3748/wjg.v25.i17.2110
[58] Beckett JM, Singh NK, Phillips J, et al. Anti-Heartburn Effects of Sugar Cane Flour: A Double-Blind, Randomized, Placebo-Controlled Study[J]. Nutrients, 2020, 12(6).
[59] Rao S, Bhagatwala J. Small Intestinal Bacterial Overgrowth: Clinical Features and Therapeutic Management[J]. Clin Transl Gastroenterol, 2019, 10(10): e00078. doi: 10.14309/ctg.0000000000000078
[60] Tian Z, Yang Z, Gao J, et al. Lower esophageal microbiota species are affected by the eradication of Helicobacter pylori infection using antibiotics[J]. Exp Ther Med, 2015, 9(3): 685-692. doi: 10.3892/etm.2015.2169
[61] Sawada A, Fujiwara Y, Nagami Y, et al. Alteration of Esophageal Microbiome by Antibiotic Treatment Does Not Affect Incidence of Rat Esophageal Adenocarcinoma[J]. Dig Dis Sci, 2016, 61(11): 3161-3168. doi: 10.1007/s10620-016-4263-6
[62] 宋庆增, 谢胜, 黎丽群. 4种经方对比质子泵抑制剂治疗反流性食管炎疗效的网状Meta分析[J]. 时珍国医国药, 2020, 31(1): 249-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202001083.htm
[63] 郭震浪, 苏振宁, 王正飞, 等. 半夏泻心汤加减治疗反流性食管炎疗效的Meta分析[J]. 中国实验方剂学杂志, 2015, 21(24): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201524054.htm
[64] 黄雨晴, 周易, 黄鹤, 等. 清郁和降汤对反流性食管炎模型大鼠食管组织LPS/TLR4/NF-κB通路及食管黏膜屏障的影响[J]. 中医杂志, 2022, 63(22): 2170-2178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ202222014.htm
[65] Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. doi: 10.1016/j.chom.2013.07.012
-